

S. Guinchard¹, G. Le Bars²

S. Guinchard

Numerical study of the influence of ion-induced electrons on the dynamics of electron clouds in gyrotron-like geometries

January 13, 2023

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Physics Section (SPH), CH-1015 Lausanne, Switzerland

2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

S. Guinchard

- Introduction
- II Theory
	- Choosing a model
	- Implementation
- III Results
	- Module testing
	- Cloud formation and dynamics
		- TREX *slanted*
		- TREX *extrude*
		- GT-170
- Conclusion

Introduction - Non neutral plasmas

- Collection of charged parts s.t. overall no charge neutrality [DS]
- Non-neutral plasmas relevant to many fields of physics: Astrophysics, atomic clocks, particle accelerators, surface engineering & **ECRH.**
- Electron Cyclotron Resonant Heating, for which **gyrotrons** are needed.

C sputtering in a plasma cell [Cern]

Neutron star

magnetosphere TCV gyrotron for ECRH
magnetosphere

Source: Courtesy of S. Alberti

EPFL Introduction - The gyrotron as a high power mm wave source

- Micro-waves for ECRH
- 1 MW, 170 GHz continuous beam
- 24 1MW gyrotrons for ITER ECRH

EPFL Introduction - The gyrotron as a high power mm wave source

EPFL About the problem of trapping

Config leading to magnetic well [PPZ+16]**B** Swiss **Plasma Center**

- Due to **magnetic** and **electric** fields topology, some magnetic potential **wells** can form.
- Magnetic field line crosses twice an equipotential.
- Directional force keeps electrons **in the well** while they drift **azimuthally**.

• We seek an expression for *γ*, the **electron yield per incident ion**.

Incident ion w/ energy *E*

• We seek an expression for *γ*, the **electron yield per incident ion**.

Incident ion w/ energy *E*

• We seek an expression for *γ*, the **electron yield per incident ion**.

Swiss Plasma Center

 k **emitted** e^- **s.t** $\langle k \rangle = \gamma(E)$

- We seek an expression for γ , the electron yield per incident ion.
- γ is expected to depend on the incident particle energy, some material parameters (target density, transport phenomena for produced electrons).
- Semi-empirical (kinetic) model: *Schou* 1988 [DH]

 $\gamma = \Lambda$

where Λ contains the ${\rm\bf cross\text{-}sections}$ dependence for energy deposition, β accounts for ${\rm\bf energy}$ **transport** of the produced electrons, and $\frac{1}{1}$ corresponds to the energy loss of ions in the solid, per unit distance. *dE* $dx \mid_i$

$$
\mathbf{1} \cdot \boldsymbol{\beta} \cdot \frac{dE}{dx}\bigg|_{i},
$$

EPFL Theory: Choosing a model

- For ions like $H^+, H_2^+,$ the product $\Lambda \cdot \beta\;$ has been measured indep. of the metal and of approx. 10^{-3} cm/MeV = 10^{-6} cm/keV. \mathcal{O}_2^+ , the product $\Lambda \cdot \beta$
- Hence our kinetic model reads $\gamma(E) = 10^{-6} \cdot \frac{dE}{dx}$, with $E \in [1, 50]$ keV. *dE*
- Potential emissions: $E \in [0,1]$ keV, we need another model
- *Hagstrum* 1954 [Kis73]:

where ϵ_F denotes the **Fermi** energy of the solid, E_i the energy to produce the **incident ion**, and ϕ the **work function** of the metal.

$$
\frac{J.2}{\epsilon_F}\left(0.8\cdot E_i-2\phi\right),\,
$$

γ ∼ 0.2

```
dx \mid_iE \in [1, 50]
```


EPFL Choosing a model: remarks

- Schou's model: kinetic, holds for $E \in [1,50]$ keV
- Hagstrum's model: potential, holds for $E \in [0,1]$ keV, constant γ
- constant γ , so the yield is decreasing continuously on the whole range.

• **Transition between the two models** ? Linear interpolation between bottom of kinetic region and

EPFL

Theory: Implementation

- Yield curve obtained by interpolating the points with cubic polynomials
- Right plot shows transition between Hagstrum's and Schou's model

Implementation: electron generation

- electrons generated per incident ion (parameter $λ$)
- Poisson s.t. $\lambda(E) = \gamma(E)$

- Procedure:
	- Generate a random number uniformly in [0,1[

1 $\overline{CDF(k)}$ 0.9 *r* 0.8 0.7 CDF 0.6 0.5 0.4 0.3 \tilde{k} 0 $\begin{bmatrix} 2 & 4 & 6 & 8 & 10 \ & & k & & \end{bmatrix}$

 $k = 1$

$$
P(k) = \frac{e^{-\gamma(E)}}{k!}
$$
, and CDF: $C(k) = \sum_{j=0}^{\lfloor k \rfloor} \frac{\gamma(E)^j}{j!}$

• Evaluate C with
$$
\lambda = \gamma(E)
$$

• If $r \in [C(\tilde{k}), C(\tilde{k} + 1)]$ then $k = \tilde{k}$. \widetilde{k} *k*),*C*(\widetilde{k} $k + 1$)[*then* $k =$ \widetilde{k}

N Swiss **Plasma Center**

• Electron generation: discrete 'rare' events \Longrightarrow Poisson distribution for the number of

Electron generation - Test of Poisson generator **EPFL**

Implementation: Energy distribution of emitted electrons **EPFL**

- According to [DH] and [PPZ+16]: follows a gamma distribution that averages at 2 eV.
- Recall the two parameters: shape param. *κ* and scale param. θ s.t average $m = \kappa \cdot \theta$

EPFL Implementation: Energy distribution of emitted electrons

- According to [DH] and [PPZ+16]: follows a gamma distribution that averages at 2 eV.
- Recall the two parameters: shape param. κ and scale param. θ s.t average $m = \kappa \cdot \theta$

• Chose $(\kappa, \theta) = (0.5, 4)$ so that peak prob closer to 2

Energy distribution of emitted electrons EPFL

- Procedure: generate a random number r uniformly in $[0,1[$
- Evaluate the CDF in the range $[0,15]$ eV with $N = 500$ points

• Take E as $E := \min_{\tilde{E}} |r - C(E)$ $\widetilde{\mathbf{H}}$)|

• Identify each ion disappearing, evaluating the geometric weight (see [LB22])

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\Longrightarrow \gamma(E)$ can be used in the random generation of k e^- for which add. memory has been allocated.

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\Longrightarrow \gamma(E)$ can be used in the random generation of k e^- for which add. Memory has been allocated.
- placed at the last position **inside** the domain + given an energy randomly gamma distr. *e*−

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\Longrightarrow \gamma(E)$ can be used in the random generation of k e^- for which add. Memory has been allocated.
- placed at the last position **inside** the domain + given an energy randomly gamma distr. *e*−
- Ion safely removed from the simulation

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\Longrightarrow \gamma(E)$ can be used in the random generation of k e^- for which add. Memory has been allocated.
- placed at the last position **inside** the domain + given an energy randomly gamma distr. *e*−
- Ion safely removed from the simulation

N Swiss

Plasma

Center

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\Longrightarrow \gamma(E)$ can be used in the random generation of k e^- for which add. Memory has been allocated.
- placed at the last position **inside** the domain + given an energy randomly gamma distr. *e*−
- Ion safely removed from the simulation

N Swiss

Plasma

Center

EPFL Results - Testing the module (statistics)

- Initial configuration: 3 horizontal slices of H_2^+ ions - SS, AI and Cu. 2
- $\Delta \Phi = 20$ kV. $B = 0.21$ T.

•
$$
r_a = 10^{-3} \text{ m}, r_b = 10^{-2} \text{ m}
$$

Results - Testing the module (statistics) EPFL

- Initial configuration: 3 horizontal slices of H_2^+ ions - SS, AI and Cu. 2
- $\Delta \Phi = 20$ kV. $B = 0.21$ T.

•
$$
r_a = 10^{-3} \text{ m}, r_b = 10^{-2} \text{ m}
$$

Testing the module (statistics) **EPFL**

Testing the module (statistics)**EPFL**

Swiss Plasma Center

TABLE I. Yield statistics for ${\rm H_2^+}$ ions impinging on the three materials

S. Guinchard

EPFL Testing the module (trapping)

Center

Cloud formation and dynamics: The case TREX (slanted) **EPFL**

- **• Physical/numerical parameters**
	- $\Delta \Phi = 20$ kV
	- Neutral pressure $P_n \sim 2 \cdot 10^{-2}$ mbar

EPFL Cloud formation and dynamics: TREX slanted geometry

EPFL Cloud formation and dynamics: TREX slanted geometry

TREX slanted - collected currents **EPFL**

Domain

S. Guinchard

TREX slanted - collected currents EPFL

Center

S. Guinchard

TREX slanted - SUMMARY **EPFL**

Plasma Center

- Same cloud **densities**
- Same cloud **formation times**
- Current increased by ∼ **40-50%**

EPFL Cloud formation and dynamics: TREX extrude geometry

- **• Physical/numerical parameters**
	- $\Delta \Phi = 20$ kV

EPFL TREX extrude geometry - total charge and cloud formation

Plasma Center

EPFL TREX extrude geometry - total charge and cloud formation

Plasma Center

EPFL TREX extrude geometry - total charge and cloud formation

Center

TREX extrude - collected currents

Plasma Center

FIASIIIA Center

S. Guinchard

TREX extrude - potential wells and cloud contours **EPFL**

Center

S. Guinchard

TREX extrude - SUMMARY

- Density increased by IIEE of 20%
- Cloud forming about 3 times faster
- Current increased by **20%** ∼
- Cloud radially lower: well fills by bottom (IIE)

I IGOIIIG Center

EPFL Gt-170 refurbished MIG

Bottom cloud filled first by IIE

B Swiss **Plasma Center**

EPFL

Gt-170: Final densities (both)

Gt-170: potential well and cloud contours **EPFL**

Gt-170: collected currents (No IIEE)

Plasma Center

EPFL Gt-170: collected currents (Both)

• Total current increased by about 20-25% (current from bottom well weaker).

• Bottom cloud density 2 twice as high as without IIEE.

EPFL Gt-170: surface current-densities (IIEE)

 $t/\tau_{\rm d} = 44.90$ 90 85 80 75 $\begin{array}{c}\n 20 \\
\begin{array}{c}\n 20 \\
\hline\n 65\n \end{array}\n \end{array}$ 60 55 50 45 -50 10_p 50 150 $\overline{0}$ z [mm] **Emission of possibly adiab. trapped** *e*

• Potentially adiabatically trapped electrons generated ? [−]

Plasma Center

Gt-170: Summary EPFI

Swiss Plasma Center

- Density doubled in lower well.
- Bottom cloud lower (radially) See TREX results.
- Same behavior for upper cloud.
	- TREX design is appropriate to describe this type of MIG.

S. Guinchard

• TREX slanted and extrude geometry succeeded at predicting results in more general MIG

• Overall, the total current measured was affected by IIEE, increasing (on average) by 20%.

- geometries (see GT-170).
-
- However, still same order of magnitude.
- Bottom cloud density (only) affected.
- Potentially some non-desired effects induced: generation of adiabatically trapped electrons ?

References EPFL.

[DS]: Davidson. *Physics of Non Neutral Plasmas.*

[LB22]: Guillaume Le Bars. *Models, manual and validations for FENNECS code*, 2022.

[Kis73]: L. M. Kishinevsky. *Estimation of electron potential emission yield on metal and ion parameters*.

[DH]: D. Hasselkamp. *Particle Induced Electron Emissions II.* Springer Berlin. Heidelberg

[PPZ+16]: I. Gr. Pagonakis et al. *Electron trapping mechanisms in Magnetron Injection Guns*. Physics of Plasmas, 2016.

[Cern]: *A remedy against electron clouds inside particle colliders*, home.cern (online)

B Swiss **Plasma Center**

S. Guinchard

Thank you !