

S. Guinchard¹, G. Le Bars²

January 13, 2023

¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Physics Section (SPH), CH-1015 Lausanne, Switzerland

² Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

Swiss Plasma Center

Numerical study of the influence of ion-induced electrons on the dynamics of electron clouds in gyrotron-like geometries

S. Guinchard

- Introduction
- II Theory
 - Choosing a model
 - Implementation
- III Results
 - Module testing
 - Cloud formation and dynamics
 - TREX slanted
 - TREX extrude
 - GT-170
- Conclusion

Swiss Plasma Center

S. Guinchard

EPFL **Introduction - Non neutral plasmas**

- Collection of charged parts s.t. overall no charge neutrality [DS]
- Non-neutral plasmas relevant to many fields of physics: Astrophysics, atomic clocks, particle accelerators, surface engineering & ECRH.
- Electron Cyclotron Resonant Heating, for which gyrotrons are needed.

C sputtering in a plasma cell [Cern]

Neutron star magnetosphere

TCV gyrotron for ECRH

EPFL Introduction - The gyrotron as a high power mm wave source

- Micro-waves for ECRH
- 1 MW, 170 GHz continuous beam
- 24 1MW gyrotrons for ITER ECRH

Source: Courtesy of S. Alberti

EPFL Introduction - The gyrotron as a high power mm wave source

Swiss Plasma Center

Region of interest

About the problem of trapping EPFL

- Due to magnetic and electric fields topology, some magnetic potential wells can form.
- Magnetic field line crosses twice an equipotential.
- Directional force keeps electrons in the well while they drift azimuthally.

Config leading to magnetic well [PPZ+16] Plasma Center

Swiss

EPFL Theory: Choosing a model for IIEE

• We seek an expression for γ , the electron yield per incident ion.

Incident ion w/ energy E

EPFL Theory: Choosing a model for IIEE

• We seek an expression for γ , the electron yield per incident ion.

Incident ion w/ energy E

EPFL Theory: Choosing a model for IIEE

• We seek an expression for γ , the electron yield per incident ion.

Swiss Plasma Center

k emitted e^- s.t $\langle k \rangle = \gamma(E)$

EPFL Theory: Choosing a model for IEE

- We seek an expression for γ , the **electron yield per incident ion**.
- γ is expected to depend on the incident particle energy, some material parameters (target density, transport phenomena for produced electrons).
- Semi-empirical (kinetic) model: Schou 1988 [DH]

 $\gamma = \Lambda$

where Λ contains the **cross-sections** dependence for energy deposition, β accounts for **energy transport** of the produced electrons, and $\frac{dE}{dx}\Big|_i$ corresponds to the **energy loss** of ions in the solid, per unit distance.

$$\left| \Lambda \cdot \beta \cdot \frac{dE}{dx} \right|_i$$

EPFL Theory: Choosing a model

- For ions like H^+ , H_2^+ , the product $\Lambda \cdot \beta$ has been measured indep. of the metal and of approx. $10^{-3} \text{ cm/MeV} = 10^{-6} \text{ cm/keV}.$
- Hence our kinetic model reads $\gamma(E) = 10^{-6} \cdot \frac{dE}{dx} \Big|_{t}$, with $E \in [1,50]$ keV.
- Potential emissions: $E \in [0,1]$ keV, we need another model
- *Hagstrum* 1954 [Kis73]:

 $\gamma \sim \frac{0.2}{\epsilon_F} \left(\frac{1}{\epsilon_F} \right)$

Swiss Plasma Center

$$\left(0.8\cdot E_i-2\phi\right),$$

where ϵ_F denotes the **Fermi** energy of the solid, E_i the energy to produce the **incident ion**, and ϕ the **work function** of the metal.

EPFL Choosing a model: remarks

- Schou's model: **kinetic**, holds for $E \in [1,50]$ keV
- Hagstrum's model: **potential**, holds for $E \in [0,1]$ keV, constant γ
- Transition between the two models ? Linear interpolation between bottom of kinetic region and constant γ , so the yield is decreasing continuously on the whole range.

EPFL

Theory: Implementation

- Yield curve obtained by interpolating the points with cubic polynomials
- Right plot shows transition between Hagstrum's and Schou's model

Swiss Plasma Center

S. Guinchard

Implementation: electron generation EPFL

- electrons generated per incident ion (parameter λ)
- Poisson s.t. $\lambda(E) = \gamma(E)$

$$P(k) = \frac{e^{-\gamma(E)}}{k!}, \text{ and CDF: } C(k) = \sum_{j=0}^{\lfloor k \rfloor} \frac{\gamma(E)}{j!}$$

- Procedure:
 - Generate a random number uniformly in [0,1]

• Evaluate C with
$$\lambda = \gamma(E)$$

• If $r \in [C(\tilde{k}), C(\tilde{k}+1)]$ then $k = \tilde{k}$.

Swiss Plasma Center

Electron generation: discrete 'rare' events \implies **Poisson** distribution for the number of

EPFL Electron generation - Test of Poisson generator

Implementation: Energy distribution of emitted electrons EPFL

- According to [DH] and [PPZ+16]: follows a gamma distribution that averages at 2 eV.
- Recall the two parameters: shape param. κ and scale param. θ s.t average $m = \kappa \cdot \theta$

Implementation: Energy distribution of emitted electrons EPFL

- According to [DH] and [PPZ+16]: follows a gamma distribution that averages at 2 eV.
- Recall the two parameters: **shape** param. κ and **scale** param. θ s.t average $m = \kappa \cdot \theta$

• Chose $(\kappa, \theta) = (0.5, 4)$ so that peak prob closer to 2

EPFL Energy distribution of emitted electrons

- Procedure: generate a random number r uniformly in [0,1[
- Evaluate the CDF in the range [0,15] eV with N = 500 points

• Take E as $E := \min_{\tilde{E}} |r - C(\tilde{E})|$

Identify each ion disappearing, evaluating the geometric weight (see [LB22])

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\implies \gamma(E)$ can be used in the random generation of $k e^-$ for which add. memory has been allocated.

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\implies \gamma(E)$ can be used in the random generation of $k e^-$ for which add. Memory has been allocated.
- e^- placed at the last position **inside** the domain + given an energy randomly gamma distr.

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\implies \gamma(E)$ can be used in the random generation of $k e^-$ for which add. Memory has been allocated.
- e^- placed at the last position **inside** the domain + given an energy randomly gamma distr.
- Ion safely removed from the simulation

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\implies \gamma(E)$ can be used in the random generation of $k e^-$ for which add. Memory has been allocated.
- e^- placed at the last position **inside** the domain + given an energy randomly gamma distr.
- Ion safely removed from the simulation

Swiss

Plasma

Center

- Identify each ion disappearing, evaluating the geometric weight (see [LB22])
- Energy E evaluated $\implies \gamma(E)$ can be used in the random generation of $k e^-$ for which add. Memory has been allocated.
- e^- placed at the last position **inside** the domain + given an energy randomly gamma distr.
- Ion safely removed from the simulation

Swiss

Plasma

Center

EPFL Results - Testing the module (statistics)

- Initial configuration: 3 horizontal slices of H_2^+ ions SS, Al and Cu.
- $\Delta \Phi = 20$ kV. B = 0.21 T.

•
$$r_a = 10^{-3} \text{ m}$$
, $r_b = 10^{-2} \text{ m}$

EPFL Results - Testing the module (statistics)

- Initial configuration: 3 horizontal slices of H_2^+ ions SS, Al and Cu.
- $\Delta \Phi = 20$ kV. B = 0.21 T.

•
$$r_a = 10^{-3} \text{ m}$$
, $r_b = 10^{-2} \text{ m}$

EPFL Testing the module (statistics)

Testing the module (statistics) EPFL

Swiss Plasma Center

	E_1	E_2	E_3
304 SS			
γ_{th}	1.311	1.623	1.870
γ_{iiee}	1.299	1.627	1.891
ϵ_{rel}	0.9%	0.2%	1.1%
	E_1	E_2	E_3
Cu			
γ_{th}	1.237	1.522	1.746
γ_{iiee}	1.229	1.518	1.760
ϵ_{rel}	0.6%	0.3%	0.8%
	E_1	E_2	E_3
Al			
γ_{th}	0.920	1.133	1.297
γ_{iiee}	0.910	1.115	1.293
ϵ_{rel}	1.0%	1.6%	0.3%

TABLE I. Yield statistics for H_2^+ ions impinging on the three materials

EPFL **Testing the module (trapping)**

Center

- S. Guinchard

EPFL Cloud formation and dynamics: The case TREX (slanted)

- Physical/numerical parameters
 - $\Delta \Phi = 20 \text{ kV}$
 - Neutral pressure $P_n \sim 2 \cdot 10^{-2}$ mbar

EPFL Cloud formation and dynamics: TREX slanted geometry

EPFL Cloud formation and dynamics: TREX slanted geometry

TREX slanted - collected currents EPFL

Domain

EPFL TREX slanted - collected currents

Center

S. Guinchard

EPFL TREX slanted - SUMMARY

- Same cloud densities
- Same cloud formation times
- Current increased by \sim **40-50%**

Plasma Center

S. Guinchard

EPFL Cloud formation and dynamics: TREX extrude geometry

- Physical/numerical parameters
 - $\Delta \Phi = 20 \text{ kV}$

EPFL TREX extrude geometry - total charge and cloud formation

Plasma Center

EPFL TREX extrude geometry - total charge and cloud formation

Plasma Center

EPFL TREX extrude geometry - total charge and cloud formation

Center

TREX extrude - collected currents EPFL

Plasma Center

гіазіна Center

S. Guinchard

EPFL TREX extrude - potential wells and cloud contours

Center

TREX extrude - SUMMARY

- Density increased by IIEE of 20%
- Cloud forming about 3 times faster
- Current increased by ~ 20%
- Cloud radially lower: well fills by bottom (IIE)

ιιασπια Center

S. Guinchard

EPFL Gt-170 refurbished MIG

 Physical parameters 	90
	85 -
• $\Delta \Phi = 25 \text{ kV}$	80
- Neutral pressure $P_n \sim 2 \cdot 10^{-2} {\rm mbar}$	도 75
	<u>E</u> 70
	65
 2 potential wells formed by equipotentials and magnetic field lines 	60
	55
magnetic neia mies	50
	45

Bottom cloud filled first by IIE

EPFL

Gt-170: Final densities (both)

EPFL Gt-170: potential well and cloud contours

EPFL Gt-170: collected currents (No IIEE)

Plasma Center

Gt-170: collected currents (Both) EPFL

• Total current increased by about 20-25% (current from bottom well weaker).

• Bottom cloud density 2 twice as high as without IIEE.

EPFL Gt-170: surface current-densities (IIEE)

• Potentially adiabatically trapped electrons generated ?

Swiss Plasma Center

 $t/\tau_{d} = 44.90$ 90 85 80 75 ۳ 5 5 60 55 50 45 -50 100 50 150 0 z [mm] **Emission of possibly** adiab. trapped e^-

Gt-170: Summary EPFI

- Density doubled in lower well.
- Bottom cloud lower (radially) See TREX results.
- Same behavior for upper cloud.
- TREX design is appropriate to describe this type of MIG.

Swiss Plasma Center

- geometries (see GT-170).
- However, still same order of magnitude.
- Bottom cloud density (only) affected.
- Potentially some non-desired effects induced: generation of adiabatically trapped electrons?

• TREX slanted and extrude geometry succeeded at predicting results in more general MIG

Overall, the total current measured was affected by IIEE, increasing (on average) by 20%.

S. Guinchard

EPFL References

[DS]: Davidson. Physics of Non Neutral Plasmas.

[LB22]: Guillaume Le Bars. Models, manual and validations for FENNECS code, 2022.

[Kis73]: L. M. Kishinevsky. Estimation of electron potential emission yield on metal and ion parameters.

[DH]: D. Hasselkamp. Particle Induced Electron Emissions II. Springer Berlin. Heidelberg

[PPZ+16]: I. Gr. Pagonakis et al. *Electron trapping mechanisms in Magnetron Injection Guns*. Physics of Plasmas, 2016.

[Cern]: A remedy against electron clouds inside particle colliders, home.cern (online)

Swiss Plasma Center

Thank you !

S. Guinchard