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Introduction - Non neutral plasmas

•  Collection of charged parts s.t. overall no 
charge neutrality [DS]


•  Non-neutral plasmas relevant to many fields of 
physics: Astrophysics, atomic clocks,  particle 
accelerators, surface engineering & ECRH. 

• Electron Cyclotron Resonant Heating, for 
which gyrotrons are needed.

C sputtering in a plasma cell [Cern]

Neutron star

 magnetosphere TCV gyrotron for ECRH
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Introduction - The gyrotron as a high power mm wave source

Source: Courtesy of S. Alberti 

• Micro-waves for ECRH


• 1 MW, 170 GHz continuous 
beam 

• 24 1MW gyrotrons for ITER 
ECRH
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About the problem of trapping

• Due to magnetic and electric fields topology, some magnetic potential wells can form.


• Magnetic field line crosses twice an equipotential.


• Directional force keeps electrons in the well while they drift azimuthally. 


F|| = − e ⋅ E||

 
 

Φmax

Φmin

Φd

Φ(s)

s
Config leading to magnetic well [PPZ+16]
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Theory: Choosing a model for IIEE

• We seek an expression for , the electron yield per incident ion. γ
Incident ion 
w/ energy E
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Theory: Choosing a model for IIEE

• We seek an expression for , the electron yield per incident ion. γ

 emitted  s.t k e−

< k > = γ(E)
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Theory: Choosing a model for IIEE

• We seek an expression for , the electron yield per incident ion. 


•  is expected to depend on the incident particle energy, some material parameters (target 
density, transport phenomena for produced electrons).


• Semi-empirical (kinetic) model: Schou - 1988 [DH]


,               


where  contains the cross-sections dependence for energy deposition,  accounts for energy      

transport of the produced electrons, and  corresponds to the energy loss of ions in the solid, 

per unit distance. 

γ

γ

γ = Λ ⋅ β ⋅
dE
dx i

Λ β
dE
dx i
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Theory: Choosing a model 

• For ions like , , the product   has been measured indep. of the metal and of approx. 
 cm/MeV  cm/keV. 

• Hence our kinetic model reads , with  keV.


• Potential emissions:  keV, we need another model


• Hagstrum - 1954 [Kis73]:


,


where  denotes the Fermi energy of the solid,  the energy to produce the incident ion, and  
the work function of the metal. 

H+ H+
2 Λ ⋅ β

10−3 = 10−6

γ(E) = 10−6 ⋅
dE
dx i

E ∈ [1,50]

E ∈ [0,1]

γ ∼
0.2
ϵF

(0.8 ⋅ Ei − 2ϕ)
ϵF Ei ϕ
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Choosing a model: remarks

• Schou’s model: kinetic, holds for  keV


• Hagstrum’s model: potential, holds for  keV, constant 


• Transition between the two models ? Linear interpolation between bottom of kinetic region and 
constant , so the yield is decreasing continuously on the whole range. 

E ∈ [1,50]

E ∈ [0,1] γ

γ
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Theory: Implementation 

• Yield curve obtained 
by interpolating the 
points with cubic 
polynomials


• Right plot shows 
transition between 
Hagstrum’s and 
Schou’s model
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Implementation: electron generation

• Electron generation: discrete ‘rare’ events  Poisson distribution for the number of 
electrons generated per incident ion (parameter )


• Poisson s.t. 


• , and CDF: 


• Procedure: 


• Generate a random number uniformly in 


• Evaluate C with 


• If  then  .

⟹
λ

λ(E) = γ(E)

P(k) =
e−γ(E)

k!
C(k) =

⌊k⌋

∑
j=0

γ(E) j

j!

[0,1[

λ = γ(E)

r ∈ [C(k̃), C(k̃ + 1)[ k = k̃ 0 2 4 6 8 10
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Electron generation - Test of Poisson generator

PDF(k)

Normalised 

# counts



S. Guinchard

Implementation: Energy distribution of emitted electrons

• According to [DH] and [PPZ+16]: follows a gamma distribution that averages at 2 eV. 


• Recall the two parameters: shape param.  and  scale param.  s.t average κ θ m = κ ⋅ θ
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Implementation: Energy distribution of emitted electrons
• According to [DH] and [PPZ+16]: follows a gamma distribution that averages at 2 eV. 


• Recall the two parameters: shape param.  and  scale param.  s.t average 


• Chose  so that peak prob closer to 2

κ θ m = κ ⋅ θ

(κ, θ) = (0.5,4)
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Energy distribution of emitted electrons

• Procedure: generate a random number  uniformly in 


• Evaluate the CDF in the range  eV with  points 


• Take  as 

r [0,1[

[0,15] N = 500

E E := min
Ẽ

|r − C(Ẽ) |

PDF(E)

Normalised 

# counts for N = 105
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Implementation - summary

• Identify each ion disappearing, evaluating the geometric weight (see [LB22])
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E ⟹ γ(E) k e−



S. Guinchard

Implementation - summary

• Identify each ion disappearing, evaluating the geometric weight (see [LB22])


• Energy  evaluated   can be used in the random generation of   for which add. 
Memory has been allocated.


•  placed at the last position inside the domain + given an energy randomly gamma distr. 

E ⟹ γ(E) k e−

e−



S. Guinchard

Implementation - summary

• Identify each ion disappearing, evaluating the geometric weight (see [LB22])


• Energy  evaluated   can be used in the random generation of   for which add. 
Memory has been allocated.


•  placed at the last position inside the domain + given an energy randomly gamma distr. 


• Ion safely removed from the simulation 

E ⟹ γ(E) k e−

e−



S. Guinchard

Implementation - summary

• Identify each ion disappearing, evaluating the geometric weight (see [LB22])


• Energy  evaluated   can be used in the random generation of   for which add. 
Memory has been allocated.


•  placed at the last position inside the domain + given an energy randomly gamma distr. 


• Ion safely removed from the simulation 

E ⟹ γ(E) k e−

e−



S. Guinchard

Implementation - summary

• Identify each ion disappearing, evaluating the geometric weight (see [LB22])


• Energy  evaluated   can be used in the random generation of   for which add. 
Memory has been allocated.


•  placed at the last position inside the domain + given an energy randomly gamma distr. 


• Ion safely removed from the simulation 

E ⟹ γ(E) k e−

e−

3 e− 1 e−
2 e−
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Results - Testing the module (statistics)

• Initial configuration: 3 horizontal slices 
of  ions -  SS, Al and Cu. 


•  kV. 0.21 T.


•   m ,  m 

H+
2

ΔΦ = 20 B =

ra = 10−3 rb = 10−2

1000 ions
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Results - Testing the module (statistics)

• Initial configuration: 3 horizontal slices 
of  ions -  SS, Al and Cu. 


•  kV. 0.21 T.


•   m ,  m 

H+
2

ΔΦ = 20 B =

ra = 10−3 rb = 10−2

vR
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Testing the module (trapping)

Cloud to emphasize 
trapping region

Vacuum potential well
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Cloud formation and dynamics: The case TREX (slanted)

• Physical/numerical parameters 

•  kV


• Neutral pressure  mbar

ΔΦ = 20

Pn ∼ 2 ⋅ 10−2
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Cloud formation and dynamics: TREX slanted geometry

IIEE
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Cloud formation and dynamics: TREX slanted geometry

IIEEΔq

Δq
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TREX slanted - collected currents
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TREX slanted - collected currents
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TREX slanted - SUMMARY
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• Same cloud densities


• Same cloud formation times


• Current increased by  40-50%∼

+ 40-50%

IIEE
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Cloud formation and dynamics: TREX extrude geometry

• Physical/numerical parameters 

•  kV


• Neutral pressure  mbar

ΔΦ = 20

Pn ∼ 1 ⋅ 10−2
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TREX extrude geometry - total charge and cloud formation
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TREX extrude geometry - total charge and cloud formation

Δq ∝ Δn
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TREX extrude geometry - total charge and cloud formation

IIEE No IIEE
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TREX extrude - collected currents
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TREX extrude - collected currents
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TREX extrude - potential wells and cloud contours
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TREX extrude - SUMMARY

• Density increased by IIEE of 20%


• Cloud forming about 3 times faster


• Current increased by  20% 

• Cloud radially lower: well fills by bottom (IIE)

∼
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Gt-170 refurbished MIG

• Physical parameters 

•  kV


• Neutral pressure 
 mbar


• 2 potential wells formed 
by equipotentials and 
magnetic field lines

ΔΦ = 25

Pn ∼ 2 ⋅ 10−2
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Gt-170: Total charge and vacuum potential well
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Gt-170: Total charge and vacuum potential well

Bottom cloud filled first by IIE
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No IIEE IIEE

Gt-170: Final densities (both)
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Gt-170: potential well and cloud contours

No IIEE IIEE

Bottom cloud  
located lower 

(See TREX extrude)

Bottom cloud  
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(See TREX extrude)
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Gt-170: collected currents (No IIEE)
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Gt-170: collected currents (Both)
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Gt-170: Collected currents steady state (IIEE + no IIEE)
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• Total current increased by about 20-25% (current from bottom well weaker).


• Bottom cloud density 2 twice as high as without IIEE.

No IIEE
Upper cloud density

Lower cloud density
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Gt-170: surface current-densities (IIEE)

Emission of possibly  
adiab. trapped  e−• Potentially adiabatically trapped electrons generated ? 
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Gt-170: Summary
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• Density doubled in lower well.


• Bottom cloud lower (radially) - See TREX results.


• Same behavior for upper cloud.


• TREX design is appropriate to describe this type of MIG.


• Overall current increased by  20%.∼



S. Guinchard

Conclusion

• TREX slanted and extrude geometry succeeded at predicting results in more general MIG 
geometries (see GT-170).


• Overall, the total current measured was affected by IIEE, increasing (on average) by 20%.


• However, still same order of magnitude. 


• Bottom cloud density (only) affected. 


• Potentially some non-desired effects induced: generation of adiabatically trapped 
electrons ?



S. Guinchard

References

    [DS]: Davidson. Physics of Non Neutral Plasmas. 


[LB22]: Guillaume Le Bars. Models, manual and validations for FENNECS code, 2022.


[Kis73]: L. M. Kishinevsky. Estimation of electron potential emission yield on metal and ion   
parameters. 


[DH]: D. Hasselkamp. Particle Induced Electron Emissions II. Springer Berlin. Heidelberg


[PPZ+16]: I. Gr. Pagonakis et al. Electron trapping mechanisms in Magnetron Injection Guns. 
Physics of Plasmas, 2016.


[Cern]: A remedy against electron clouds inside particle colliders, home.cern (online)



S. Guinchard

Thank you ! 


