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In this document, the torsion τ is introduced, and evaluated for some closed curves, as a toroidal
helix. In this context, and assuming circular flux surfaces, the rotational transform ι is determined
analytically on the magnetic axis using the result derived by Helander in [1]. Results are then
verified by comparison with the Stepped Pressure Equilibrium Code (SPEC). Finally, flux surface
ellipticity is introduced and combined with the magnetic axis torsion, and the magnetic shear s is
reviewed for several torsion-ellipticity combinations.
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I. INTRODUCTION

Stellarators, as tokamaks, are magnetic confinement
devices that hold promises to confine plasmas with suffi-
cient efficiency to achieve net production of electricity by
nuclear fusion. Stellarators are toroidal infrastructures,
since it has been shown by mean of topology, that
in 3D-space, the possible shapes of magnetic surfaces
formed by closed and non vanishing field lines, are
limited to a torus. Contrarily to their cousins tokamaks,
for which the poloidal magnetic field is produced by
mean of a net toroidal plasma current, stellarators’
magnetic fields are achieved by mean of external coils
only. Therefore, many of the current-driven instabilities
found in tokamaks are not excited in stellarators, which
is one of their main advantages.

The rotational transform, ι, is considered an impor-
tant parameter to take into account for plasma confine-
ment [2, 3]. In Appendix.(A), an analytical development
shows to what extent ι is crucial in the description of a
screw pinch. Note that the safety factor, denoted by q, as
used in tokamak related literature, is defined as q = 1/ι.
In addition, other parameters may have an influence on
confinement properties of stellarators, such as the profile
shape of ι. This parameter is called the magnetic shear.
It seems that both low and high magnetic shear present
good confinement qualities and these regions need to be
explored [2]. For example, experimental studies at Wen-
delstein (W7-X) have shown a better confinement effi-
ciency for high rotational transform values, provided that
distinct optimum confinement windows close to low order
resonances (1/3 and 1/2) were chosen [2, 4, 5]. Thus, a
flat, shear-less profile is then desired to stay within the
ι−range. More generally, we aim to understand which
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combinations of magnetic axis torsion and flux surfaces
ellipticity lead to shear-less profiles.

In light of that, it appears clear that stellarators
optimisation is a tremendous task, and that one
can only focus on certain optimisation classes. For
instance, certain shear-less stellarators have shown
quasi-axisymmetry [6], and thus it would be interest-
ing to focus on confinement properties of shear-less
stellarators, or to study the shear properties of quasi-
axisymmetric stellarators.

Helander reviews in [1] that the rotational transform
is affected by the ellipticity of the flux surfaces, the
current introduced in the plasma, and the torsion of
the magnetic axis, as in Eq.(28). Hence, part of this
paper will focus mainly on the concept of torsion,
mathematically, and then how the latter can generate
something physical, as it acts on ι when added to the
magnetic axis. Then, attention will be brought on the
influence of ellipticity, by studying the magnetic shear.

Results obtained regarding the torsion from a mathe-
matical point of vue are reviewed in IIIA. Behavior of
the rotational transform, around the magnetic axis, is
studied under certain circumstances in III B. Then, an
analysis of the magnetic shear is reviewed under several
combinations of torsion and ellipticity, in III C.

II. THEORY

A. Magnetic axis torsion from a mathematical
point of view

One of the goals of this report is to study how the
rotational transform is influenced by the torsion τ of the
magnetic axis. Hence it is important to have a proper
comprehension of the concept of torsion from a mathe-
matical point of vue. Intuitively one can understand the
torsion of a 3-dimensional curve as how much the latter
bends to leave its osculating plane, that is the plane
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generated by T and N, the tangent and normal vectors
respectively.

Let us now express τ in terms of the magnetic axis
parametrisation, that we shall denote by r. Assuming
the curves later described to be closed, one can think of
r expressed as a function of a toroidal angle that we shall
note φ. The torsion τ naturally arises from the Frenet-
Serret formulas describing the evolution of the Frenet
vectors T, N and B, B being the binormal vector [7].
Indeed, for a curve parametrised by its arc length l, one
has the following system to describe the evolution of this
set of vectors {T,N,B}:

dT

dl
= κN, (1)

dN

dl
= −κT + τB, (2)

dB

dl
= −τN, (3)

where κ denotes the curvature.
Now equipped with an expression linking the changes

of {T,N,B} along the curve, one no longer needs to
parametrise the curve by its arc-length. It is possible to
express the above system as a function of another curve-
parameter. Taking our toroidal φ introduced above as
the parameter, that is r ≡ r(φ), one gets for the vectors
{T,N,B}:

T(φ) =
r′(φ)

‖r′(φ)‖
, (4)

N(φ) =
T′(φ)

‖T′(φ)‖
=

r′(φ)× (r′′(φ)× r′(φ))

‖r′(φ)‖‖r′′(φ)× r′(φ)‖
, (5)

and

B(φ) = T(φ)×N(φ). (6)

Moreover, one obtains for the system (1) to (3):

dT

dφ
= ‖r′‖κN, (7)

dN

dφ
= ‖r′‖ (−κT + τB) , (8)

dB

dφ
= −‖r′‖τN. (9)

Injecting the definitions (4), (5) and (6) in the system
of equations (7) to (9), τ and κ read

κ =
‖r′(φ)× r′′(φ)‖
‖r′(φ)‖3

, (10)

τ =
r′(φ) ·

(
r′′(φ)× r′′′(φ)

)
‖r′(φ)× r′′(φ)‖2

. (11)

B. About SPEC

The Stepped Pressure Equilibrium Code (SPEC) [8],
aims to determine 3D MHD equilibria, with a stepped
pressure profile. It finds minimal plasma energy states
conserving the constraints on ellipticity and fluxes in a set
of NV nested volumes {Ri}. To do so, the energy func-
tional that needs to be minimised is the one introduced by
M.J. Hole et al, [9]. The latter is the so-called the Multi-
Region relaXed MHD (MRxMHD) energy-functional,

F =

NV∑
i=1

{∫
Ri

( p

γ − 1
+
B2

2

)
dν

− µi
2

(∫
Ri

A ·Bdν −Hi

)}
,

(12)

where pi, Hi are the pressure and magnetic helicity in
volume Ri. B and A are the magnetic field and vector
potential respectively, η the adiabatic constant and dν a
differential volume element.

The calculus of variations for the functional F yields
to Euler-Lagrange equations for each volume Ri,

δF = 0 =⇒ ∇×B = µiB. (13)

Analytical resolution of Eq.(13) is done in Appendix
(B), in the simple case of a screw pinch. Across each
interface Ii, between volumes Ri and Ri+1, we ensure
a force-balance condition, such that the total pressure
(plasma and magnetic) is continuous:

[[
p+

B2

2

]]
= 0. (14)

In the particular case of NV = 1, the energy states
are the so-called Taylor states, while when NV → ∞,
MRxMHD is equivalent to ideal MHD ones [10].

SPEC is a fixed boundary code and hence as any dif-
ferential problem with fixed boundary conditions, it re-
quires a specification of its boundary. That is achieved
expressing the boundary of the plasma surface in terms of
Fourier harmonics. The choice of cylindrical coordinates
{R̂, Ẑ} enables to parametrise the boundary as follows:

S(θ, φ) = R(θ, φ)R̂ + Z(θ, φ)Ẑ (15)

where θ and φ are the poloidal and toroidal angles re-
spectively, and range in [0, 2π]. R and Z are defined as
truncated Fourier series:

R(θ, φ) =

Mpol∑
m=0

Ntor∑
n=−Ntor

Rmn cos(mθ − nNfpφ), (16)
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Z(θ, φ) =

Mpol∑
m=0

Ntor∑
n=−Ntor

Zmn sin(mθ − nNfpφ), (17)

where Nfp is the number of field periods. Let us point
out that in the SPEC inputs used for computations
below, Rmn is denoted by Rnm so this last notation will
be kept for the results. Naturally, the same stands for
Zmn too.

The correspondance between cylindrical coordinates
and cartesian ones can be made noting that

R̂ = cos(φ)x̂ + sin(φ)ŷ, (18)

and is important, since the curvature and hence the
torsion, will be expressed in our numerical computations
using the coordinate axis defined in terms of cartesian
coordinates.

The SPEC solution then corresponds to the shapes of
the interfaces {Ii}, and the magnetic field B.

C. Magnetic axis torsion and rotational transform
ι: without current and ellipticity

Let us define now the rotational transform. According
to [11], ι can be defined as follows: the average angular
advance of a field line poloidally each times it encircles
the torus toroidally is 2πι. This can be expressed math-
ematically as follows, with Bα the covariant components
of B:

ι =
〈Bθ〉
〈Bφ〉

=
〈B · ∇θ〉
〈B · ∇φ〉

(19)

Recall that the magnetic axis is described in cylindrical
coordinates as

r(φ) = R(φ)R̂ + Z(φ)Ẑ. (20)

Since the curve is 2π/Nfp periodic in φ, R and Z can
be written as Fourier series:

R(φ) =

Ntor∑
n=0

Rn cos(nNfpφ), (21)

Z(φ) =

Ntor∑
n=1

Zn sin(nNfpφ). (22)

So the coordinate vector, defined in cartesian coordi-
nates can be expressed as

r = R(φ) cos(φ)x̂ +R(φ) sin(φ)ŷ + Z(φ)Ẑ. (23)

We are now in measure to express the torsion of the
magnetic axis in terms of the formal derivatives of r as
it has been defined above. Recall indeed that

τ =
r′(φ) ·

(
r′′(φ)× r′′′(φ)

)
‖r′(φ)× r′′(φ)‖2

. (24)

Successive derivatives of Eq.(21)-(22) read:

dk

dφk
R(φ) = Rkφ

= I(k)

Ntor∑
n=0

Rn · nk ·Nk
fp · Fk(nNfpφ),

(25)

dk

dφk
Z(φ) = Zkφ

= J (k)

Ntor∑
n=1

Zn · nk ·Nk
fp · Gk(nNfpφ),

(26)

with I(k) and J (k) that can take values ±1, Fk and Gk
being sin or cos, depending on the index k. Then Eq.(25)-
(26) have been injected in Eq.(23)-(24), and implemented
numerically. Note that the denominator of Eq.(24) is
proportional to the curvature nominator squared κ2 since
the latter is expressed as

κ =
‖r′(φ)× r′′(φ)‖
‖r′(φ)‖3

. (27)

The previously introduced expression for τ can be then
reused to compute the rotational transform ι as intro-
duced by Helander in [1]:

ι =
1

2π

∫ L

0

[
µ0J

2B0
−(cosh(η)−1)d′−τ

]
dl

cosh(η)
−N. (28)

In Eq.(28), η characterises the ellipticity of magnetic
surfaces, and J the current density on the axis, while d′
corresponds to the angle between one of the semi axis of
the ellipse centred at the coordinate axis, and the cur-
vature vector, pointing in the normal direction. N is
an integer discussed below. Hence, in the case of zero-
current and ellipticity, those terms ought to be taken as
zero and ι finally reads

ι =
1

2π

∫ L

0

−τdl −N, (29)
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which can be recast as

ι =
1

2π

∫ 2π

0

−τ
√
R′(φ)2 + Z ′(φ)2 +R(φ)2dφ−N, (30)

taking account for the fact that the infinitesimal length
element along the coordinates axis dl can be expressed
in terms of dφ, the variation of toroidal angle, through
the jacobian (Appendix (C)). The signification of the
−N term will be discussed below.

Regarding the integer N in the expression (28), its
meaning is somehow delicate, and is depends on the
applied torsion. In order to understand it, one needs to
consider the set of vectors {T,N,B}, associated to the
magnetic axis.

FIG. 1. Coordinates system {e1, e2, e3} ≡ {T,N,B} as-
sociated to magnetic axis: e2 = N is proportional to the
curvature

Using the definition of the tangent vector T = dr/dl
normalised, one gets

T =
1√

R′(φ)2 + Z ′(φ)2 +R(φ)2

 Rφ
R
Zφ

 , (31)

where the index φ means derivative with respect to φ

and the above vector is expressed in the basis {R̂, φ̂, Ẑ}.
The normal vector N is proportional to the derivative
of T with respect to a length element dl which can be
rewritten as

N ∝ dT

dl
=

1√
R2
φ + Z2

φ +R2

dT

dφ
. (32)

So finally

N ∝ 1

R2
φ + Z2

φ +R2

 Rφφ −R
2Rφ
Zφφ


− RφRφφ +RRφ + ZφZφφ

(R2
φ + Z2

φ +R2)2

 Rφ −R
R
Zφ

 .

(33)

N basically describes how many times the vector N
encircles the magnetic axis poloidally, during one toroidal
turn. As introduced by mean of Fig.(4), the angle θ = 0
defines a curve that we shall call C, and corresponds to
the direction pointed by N. In case of a plane magnetic
axis, that is without any torsion, the curve C stays in
the same plane, and hence does not encircle the magnetic
axis poloidally. But C may encircle the magnetic axis an
integer number of times N , in the case where torsion is
added to the latter.

D. Magnetic shear

7 7.5 8 8.5 9

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

FIG. 2. Poincare surfaces in the case of one volume, without
current and ellipticity. Black surfaces correspond to magnetic
surfaces. The grid of coordinates used by SPEC is shown in
pink. The blue line is associated to the radial coordinate used
in the calculus of the shear s.

Now that the rotational transform has been introduced
mathematically, it can be interesting to focus on how the
latter evolves, changing either the magnetic axis torsion,
or the magnetic surfaces ellipticity, or both. This is done
by mean of a dimensionless parameter, called the mag-
netic shear s. Formally, the magnetic shear is defined as
the following ratio

s =
r

ι

dι

dr
, (34)

where r is a radial coordinate. This way, we ensure that
the magnetic shear describes the rate of change of ι
following the radial coordinate, since s ∝ dι/dr.

Analytical expressions of the magnetic shear, by mean
of near-axis expansion, are tremendously difficult to
obtain. In this work, we instead approach this question
numerically with the SPEC code.
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In SPEC, the coordinate axis does not necessarily
coincide with the magnetic axis (see Fig.(2)). To de-
termine ι, SPEC will use a field-line tracing algorithm,
starting from the center of the coordinate grid (pink
grid on Fig.(2)), and scanning toward its right till the
boundary of the volume (red circle). Thus, to evaluate
the derivative, the radial coordinate will be taken as on
the blue line, thus r ∈ [0, 1]. The SPEC equilibrium
from Fig.(2) has the rotational transform profile shown
in Fig.(3).

0 0.2 0.4 0.6 0.8 1

2

3

4

5

FIG. 3. Discontinuity in the ι profile for the volume of
Fig.(2)

Regarding Fig.(3), it appears clearly that the first
8 points of the ι profile are erroneous, and will con-
tribute to misrepresent the shear, since the discontinuity
between the points 8 and 9 will lead to an error in
the evaluation of the numerical derivative, although
the first part shows a continuous trend. This wrong
value for ι for these 8 points come from the fact
that there is a shift between the coordinates grid
used by SPEC and the poincare surfaces plotted in
Fig.(2). Field lines that don’t encircle the magnetic axis
will give wrong ι values. Hence, it is necessary to take
points such that their surface encircles the magnetic axis.

Thus one can note here that the coordinate axis, at
the left end of the blue line, is first encircled by the
Poincare surface 8, justifying that the first 8 points from
the ι profile are not good to take. All points from index
9 till the end of the profile are good, but to make sure
that the magnetic axis is not too decentred, a shift of 5
points is added, so the magnetic axis comes closer to the
center of the next Poincare surfaces.

III. RESULTS

A. On the torsion from a mathematical point of
vue

We first implement a code that solves Eq.(23)-(24) for
any closed curve parametrised by r(φ). We start by a

circular axis, with R = R0, Z = 0 as in Fig.(4). As ex-
pected, for a circular axis, one observes a constant cur-
vature and no torsion, since the axis does not leave the
osculating plan at any time.

-5
0

5
10

-5
0

5

0

0 2 4 6

0

0.1

FIG. 4. Left: Circular magnetic axis - Right: Torsion and
curvature. Note that as R = 10, κ = 0.1 = 1/R as expected.

Now, the form of the axis has been changed to a
toroidal helix, with Nfp = 5, and parametrised as

R(φ) = R0 +R10 cos(Nfpφ),

Z(φ) = Z10 sin(Nfpφ).
(35)

The major radius of the helix is R0 and the minor ra-
dius, hence the torsion parameter, R10 following SPEC
notation. This corresponds to the case that will be re-
viewed using SPEC in the following section. In SPEC
parametrisations for ι studies, R10 = Z10. Note that
although the units (in caption of Fig.(5)) are not speci-
fied, it is of no particular importance since it is the ratio
between R0 and R10 that matters.

FIG. 5. Left: Toroidal-helical magnetic axis (Nfp = 5,
R0 = 10, R10 = 2) - Right: τ and κ.

Now, note that the curvature and the torsion are both
non-constant and oscillating around a non-zero value.
From now on, the average values, that is values around
which κ and τ oscillate will be denoted by 〈·〉 and defined
as 〈·〉 ≡ 1/2π

∫ 2π

0
·dφ. Thus, one sees that in the case of

a toroidal helix with Nfp = 5 and R10 = 1, 〈τ〉 < 0 .
Fig.(6) shows how the magnetic axis bends increasing

the minor radius, as well as the behavior of the torsion
in that case. One can then note that 〈τ〉 increases with
R10, but diminishes in absolute value. It is important to
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FIG. 6. Left: Magnetic axis - toroidal helix with increasing
minor radius R10 - Left: τ in each case.

emphasise the fact that below a certain value of R10, 〈τ〉
is positive. The reason we observe the presence of this
critical radius will be reviewed later. Nevertheless, it is
observed that the average torsion goes to zero while the
minor radius increases, as expected, since in the limit
R10 → ∞, the curve is locally similar as a circle with
infinite radius.

B. Rotational transform in the case of torsion and
no ellipticity

0 2 4 6 8 10
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0

1
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0

1

FIG. 7. Left: τ integrated along the axis - Right: ι from [1].

Now that τ has been numerically computed, we are
now equipped with all that is needed to determine iota
using eq.(28). Let us remind that in the case of zero-
ellipticity and zero current, ι reads

ι = − 1

2π

∫ L

0

τdl −N. (36)

Fig.(7) shows the result for the integral of τ along
the magnetic axis, as well as the corresponding result
for ι, increasing R10. Note the discontinuity at R10 ≡

Rcrit ' 0.38. The torsion integrated along the mag-
netic axis is positive for R10 < Rcrit, and is negative
for R10 > Rcrit. The rotational transform is nevertheless
continuous, thanks to the proper value of N used in each
[0, Rcrit] and [Rcrit, 10], as discussed below.

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

FIG. 8. Left: min(κ) increasing R10, giving Rcrit - Right:
discontinuity in τ showing the existence of a critical radius
Rcrit.

The discontinuity in the torsion can be explained by
the fact that it is inversely proportional to the curvature
(see Eq.(24)), and that the latter has a minimum going
to zero for R10 → Rcrit. Fig.(8) indeed shows that, and
τ then agrees with the behaviour emphasised first in
Fig.(6).

The reason why 〈τ〉 is positive below Rcrit and negative
above is that there is a change of sign in the term r′(φ) ·(
r′′(φ)× r′′′(φ)

)
at Rcrit. In fact τ can be rewritten as

τ =
1

r′6

r′ ·
(
r′′ × r′′′

)
κ2

, (37)

with κ the curvature. While κ goes to zero as R10

increases, ‖τ‖ increases since τ ∝ κ−2. In fact, one
coud see the situation as follows, although the argument
remains very qualitative:

To each of the radiuses R0 and R10 can be associated
a curvature vector, that is a normal direction. Each of
them then contributes in κ a component κα, α = 0, 10,
that is

κ ≡ κ(κ0, κ10). (38)

At Rcrit, both components κα compensates exactly,
and then one of the two becomes dominant as the roles
changes.

As introduced in II C, the vector N, pointing towards
the direction of the curvature, corresponds to a curve
winding (or not) around the magnetic axis. The number
of times this curve encircles the magnetic axis has to be
subtracted to the integral of τ along the axis, in order
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to get ι. Regarding Fig.(9), the angle between the two
components R and Z of e2 = N is represented along
the magnetic axis, over a full toroidal period. One can
then note that for R10 . Rcrit, e2 does not rotate fully
around the magnetic axis, whereas for R10 & Rcrit,
it does Nfp times. This way, the value of N can be
determined and ι as plotted in Fig.(7) can be obtained.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

FIG. 9. Interval covered by the angle between the compo-
nents r and z from the normal vector e2. R10 ranges in an
interval containing Rcrit.
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FIG. 10. Total magnetic axis length increasing R10.

Figure.(10) represents the total length of the magnetic
axis as a function of R10. One sees that although the
length tends to increase linearly, ι does not follow the
same trend. Indeed, it has been shown that the average
torsion tends to zero increasing the minor radius. So
taking account for that, it is consistent that ι tends to
get closer to the limit ι→ −5 in the mathematical limit
R10 →∞ =⇒ L→∞.
Indeed,

R10 →∞ =⇒ 〈τ〉 → 0 =⇒
∫ L

0

τdl→ 0

=⇒ ι→ −N = −5.

(39)

So until now, no inconsistency in the results has
been observed, still taking account that the theoretical
development for ι eq.(29) stands true close to the
magnetic axis.

0 0.5 1 1.5 2 2.5 3 3.5 4
-4.5
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-1.5

-1

-0.5

0

FIG. 11. Comparison of results for ι scanning over the
torsion, and obtained from SPEC and Eq.(30).

Now, let us focus on how accurate ι evaluated from
Eq.(29) is, comparing the above results with those ob-
tained from SPEC from the same configuration. To do so
the minor radius R10 has been scanned in the range [0, 4],
and the equilibrium has been determined by mean of the
SPEC code, for 1 volume devoid of current and ellipticity.

Figure.(11) shows the result of the comparison. Note
that SPEC gives a result for ι along a radial coordinate
from the center to the boundary of the volume. Hence
a particular value has to be chosen for ιSPEC . It is not
sufficient to take the first index, as explained in IID.
So applying the procedure from IID, one gets the blue
curve. Taking the average value of ιSPEC along the
volume-associated radial-coordinate yields to the black
curve. It is observed that results for the expansion of ι
as in eq.(29) show great concordance with SPEC results,
as long as R10 does not reach too high values. Note how
the points shift from the prediction (red) for large R10.

To keep a high concordance between the two curves
ιSPEC and ιHelander as R10 increases, it would be neces-
sary to increase the Fourier/radial resolutions in SPEC.
Moreover, as R10 reaches high values, during a toroidal
step dφ, the magnetic surface may be highly shifted in
space, and hence, considering poincare plots along φ, one
would observe that the coordinate axis moves a lot, hence
making difficult to keep it centred. This might be par-
tially improved by reducing the toroidal step dφ, increas-
ing the field-line tracing integrator precision. Neverthe-
less, one of the main results to keep in mind is that in-
creasing R10 above the critical radius, increases τ , but
decreases the latter in modulus. This leads to a decrease
of ι towards the limit ι→ −N .
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C. Magnetic shear for several combinations of
torsion and ellipticity

The goal here is to study the influence of several com-
binations of torsion and ellipticity, on the magnetic shear
s. Recall that s is defined as follows:

s =
r

ι

dι

dr
, (40)

with r a radial coordinate. As it has been shown in the
previous sections, the torsion is changed by R10 and the
ellipticity by the second mode R11. We performed a scan
of the configuration space R10 = Z10, R01 = Z01 and
R11 = Z11.

FIG. 12. First Poincare surface encircling the magnetic axis,
giving the index of the first ιSPEC term to take into account
for the shear.

Fig.(12) shows the representation of the first flux-
surface that encircles the magnetic axis, for a specific
equilibrium. Note that although inside the surface, the
magnetic axis is still decentred. Thus, the index of the
flux-surface drawn here was raised of a certain shift
nshift = 5. Then, all points form the iota profiles as
the one drawn in Fig.(3), from the shifted index were
considered in order to evaluate the derivative from
Eq.(40), as explained in IID.

To evaluate the proper behaviour of s under several
couples (R10, R11), 6500 SPEC-equilibria were consid-
ered, with R10 ∈ [−2, 2] and R11 ∈ [0.05, 0.5], with 100
points in each direction, giving a step of ∆R10 = 4 · 10−2

and ∆R11 = 45 · 10−4. The result for s(R10, R11) is
shown in Fig.(13).

Note that Fig.(13) only focuses on the region of in-
terest, so R10 . 1.2 and R11 . 0.34. Other regions
of interest could lie outside this range, and will be ex-
plored in future work. The red curve corresponds to

FIG. 13. Magnetic shear s scanned over different com-
binations of torsion and ellipticity, that is different couples
(τ, η)↔ (R10, R11).

the level set S ≡ {s = 0}, while the two white dashed-
lines corresponds to two fixed R11 values, R1

11 = 0.1273
and R2

11 = 0.2828 respectively, chosen since their in-
tersection with S is non empty. We will denote by
di ≡ {R11 = Ri11}. Thus the above condition read

di ∩ S 6= ∅. (41)

-2 -1 0 1
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0.02

0.04

0.06
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0.1

0.12

-2 -1 0 1
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

FIG. 14. Profiles of the magnetic shear varying τ for 2 fixed
ellipticity values ηi, i = 1, 2 (fixed R11), i.e profiles of s along
di

The magnetic shear has been plotted for the two sets
di i = 1, 2. The results appear on Fig.(14). It appears
that in the region of weak ellipticity, for low R11, s shows
steeper variations than for larger ellipticity, varying τ .
One can remark, from Fig.(13) that the shear-less zone
extends over an R10 range containing the critical radius.
The shear is higher at almost zero torsion (R10 ∼ 0), no
matter what the ellipticity is.

It is interesting to focus on two specific couples (τ, η),
close to the set S. We chose them in the set d1. The two
couples are represented in lower part of Fig.(15).
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FIG. 15. Two specific couples (R10, R11) both with shear
above and below zero.

Their ι-profiles have been plotted in Fig.(16). The
curve ιb corresponds to the couple below the S−curve,
hence showing an increasing profile (positive shear). In-
versely, ιa corresponds to the couple above the S−curve,
with s ≤ 0. Note that both profile show a very low
shear, confirming that the set S is relevant.

-0.4 -0.2 0 0.2 0.4 0.6 0.8

0.094

0.095

0.096

0.097

0.098

0.099

0.1

0.101

0.102

FIG. 16. ι-profiles for the two couples (R10, R11) from
Fig.(15). The red one corresponds to s < 0 and the blue
one to s > 0.

Some configurations of quasi-axisymmetric stellara-
tors have shown a shear almost constantly zero [12].
Similar properties have been observed for quasi-helically
symmetric configurations. Thus, it can be interesting to
see wether a configuration (τ, η) shows such properties
as a magnetic field independent of the toroidal angle for
example.

Fig.(17) shows the magnitude of the magnetic field at
the boundary of the volume for a configuration in S. One
can observe that the modulus of B has a periodicity of
5 maxima over a full toroidal turn, corresponding to Nfp.

Nevertheless, it is not possible by mean of only this
result to conclude on the quasi-symmetry of such a con-

figuration, since one has to plot the magnitude of B as a
function of the Boozer coordinates. This will be explored
in a future work.

FIG. 17. Modulus of the magnetic field ‖B‖ at the boundary
of the volume as a function of the toroidal and poloidal angles
φ and θ for a point located on the curve s ≡ 0.

IV. CONCLUSION

In this report, some general characteristics of the
mathematical concept of torsion have been reviewed.
Behaviour of the latter in the simple case of a circular
axis, as well as of a toroidal helix has been studied.
Numerical simulations were performed in order to
determine the rotational transform at the magnetic axis
in the case of a toroidal helix with Nfp = 5, and varying
the minor radius.

The results obtained have been compared to those
obtained running the SPEC code, with one volume,
no current and no ellipticity. Results have shown a
great concordance with predicted results, confirming
Helander’s derivation in that specific case. One could
contemplate doing further tests, adding current and
magnetic surfaces ellipticity to expression (28), for
example.

Attention has then been drawn on the magnetic shear,
since it is a promising parameter to take into account
in several optimisation strategies. The magnetic shear
in a single volume, devoid of current, and under several
torsion and ellipticity combinations has been computed,
and high shear regions as well as shear-less ones have
been emphasised. It could be interesting to run tests to
show wether such configurations with high or low shear
present hidden symmetries such as quasi-axisymmetry
or quasi-helical symmetry, since some of these configu-
rations might exhibit MHD-stability [12, 13].
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Appendix A: MHD equilibrium in a screw pinch

From the ideal MHD equation

j×B = ∇p, (A1)

and assuming the plasma pressure and the rotational
transforms are known, the goal is to show that in cylin-
drical geometry

d

dr

{
p+

(
1 +

ι2r2

R2
0

)
B2
z

2µ0

}
+
rB2

z ι
2

R2
0µ0

= 0. (A2)

Using the axisymmetry of the system, one gets that the
partial derivatives according to the height and angle in
the cylinder vanish, that is

∂

∂θ
=

∂

∂z
= 0. (A3)

From now on, all the derivatives will be written the fol-
lowing way, for the sake of simplicity:

∂

∂α
= ∂α and

d

dα
= dα α = r, zθ. (A4)

ι =
1

2π

∫ 2πR0

0

dθ

dz
=

1

2π

∫ 2πR0

0

Bθ
rBz

dz

=
2πR0

2πr

Bθ
Bz

.

(A5)

So one gets for ι2:

ι2 =
R2

0

r2
B2
θ

B2
z

. (A6)

Taking into account the two following Maxwell equations

∇×B = µ0j, (A7)

∇ ·B = 0, (A8)

the ideal MHD equation A1 reads

(∇×B)×B = µ0j. (A9)

But

∇×B =

 1
r∂θBz − ∂zBθ
∂zBr − ∂rBz

1
r∂r(rBθ)−

1
r∂θBr


=

 0
−∂rBz

1
r∂r(rBθ)

 ,

(A10)

and

∇p =

 ∂rp = drp
1
r∂θp = 0
∂zp = 0

 . (A11)

So we are only interested in computing the radial part of
Eq.(A9).

(∇×B)×B =

 0
−∂rBz

1
r∂r(rBθ)

×
 0
Bθ
Bz


=

 −Bz∂rBz − 1
r∂r(rBθ)Bθ
· · ·
0

 ,

(A12)

which yields to (since the magnetic field components are
only radial dependent)

µ0drp+BzdrBz +Bθ
1

r
dr(rBθ) = 0. (A13)

Moreover,

BzdrBz =
1

2
dr
(
B2
z

)
, (A14)

and

Bθ
1

r
dr(rBθ) =

1

r
B2
θ +

1

2
drB

2
θ . (A15)

Hence, Eq.(A13) reads:

µ0drp+
1

2
dr
{
B2
z +Bθ

}
+

1

r
B2
θ . (A16)

It is also convenient to write the angular components Bθ
as a function of Bz using the definition of ι:

B2
θ

2µ0
=
ι2r2B2

z

2µ0R2
0

, (A17)

as well as

1

rµ0
B2
θ =

ι2rB2
z

µ0R2
0

. (A18)

This way, one finally gets to the desired result:

d

dr

{
p+

(
1 +

ι2r2

R2
0

)
B2
z

2µ0

}
+
rB2

z ι
2

R2
0µ0

= 0. (A19)
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Appendix B: Magnetic field solution in nested flux
surfaces

Starting from the Maxwell equation Eq.(B1)

∇×B = µ0j, (B1)

and imposing

µ0j = µB, (B2)

as we desire to solve this equation in a screw pinch, one
gets the following

∇×B = µB. (B3)

Using the rotational definition Eq.(A10), one gets the
following set of equations to solve:

∇×B =

 1
r∂θBz − ∂zBθ
∂zBr − ∂rBz

1
r∂r(rBθ)−

1
r∂θBr


=

 µBr
µBθ
µBz


= µB.

(B4)

Using the axisymmetry of the system, the radial compo-
nent of Eq.(B4) yields to

Br = 0, (B5)

while along θ it becomes

∂zBr − ∂rBz = −∂rBz

= µBθ ⇐⇒ Bθ = − 1

µ
∂rBz.

(B6)

So Bz needs to be determined in order to find Bθ. Pro-
jecting Eq.(B4) along z:

1

r
∂r(rBθ)−

1

r
∂θBr = µBz ⇐⇒

1

r
∂r(rBθ) = µBz. (B7)

Developing the above derivative and replacing Bθ from
Eq.(B6)

Bθ = − 1

µ2
∂r

{
− 1

r2
Bθ +

1

r
∂rBθ + ∂2r2Bθ

}
, (B8)

which is equivalent to the following

r2∂2r2Bθ + r∂rBθ +
(
µ2r2 − 1

)
Bθ = 0. (B9)

This last equation can be cast in the form a Bessel equa-
tion by mean of a variable change

x = µr =⇒ ∂r = ∂rx · ∂x, (B10)

yielding to

x2
∂2

∂x2
Bθ + x

∂

∂x
Bθ +

(
x2 − 1

)
Bθ = 0, (B11)

which has as a solution a first order Bessel function J1,
that is Bθ(x(r)) = J1(x(r)).

Appendix C: Derivation of dl(dφ)

Recall that the coordinates axis is expressed as follows:

r(φ) = R(φ)R̂ + Z(φ)Ẑ. (C1)

So using Poisson’s rule:

dR̂

dφ
= Ẑ× R̂ = φ̂. (C2)

So the differential dr reads

dr =
∂r

∂φ
dφ =

(
R′(φ)R̂ +R(φ)φ̂ + Z ′(φ)Ẑ

)
dφ, (C3)

and hence

dr = (dr · dr)
1
2 =

√
R′(φ)2 + Z ′(φ)2 +R(φ)2dφ. (C4)
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