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In this document, some properties of magnetic coordinates are studied in several coordinate
systems. Transformation from general poloidal and toroidal angles to Boozer coordinates, via general
straight field lines coordinates is reviewed. Boozer coordinates have been implemented numerically
in the booz xform code [Lan18], to be evaluated over SPEC equilibria, in order to quantify the
influence of magnetic axis torsion and flux surfaces ellipticity on quasi-symmetry properties, in
particular quasi-helical symmetry and quasi-axisymmetry.
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I. INTRODUCTION

Stellarators are magnetic confinement devices that hold promises to confine plasmas with sufficient efficiency to
achieve net production of electricity by nuclear fusion. Although they do not present many of the current-driven
instabilities present in tokamaks, their optimisation constitutes however a tremendous task [Gui22]. Indeed, confining
hot plasmas using specific and appropriate magnetic fields is one of the main challenges of plasma physics research.
Hence, magnetic confinement configurations design requires careful consideration for the particles to be confined
effectively [RSB22].

A promising confinement concept is the quasi-symmetric stellarator. Quasi-symmetric stellarators possess the re-
markable property that the magnitude of the magnetic field ‖B‖ is symmetric, even whenever B is not [RSB22, LSP19].
Quasi-symmetric stellarators guarantees good neoclassical transport [CS97]. Although perfect quasi-symmetry seems
not possible to be achieved, it remains possible to exhibit behavior close to quasi-symmetry in a volume [RSB21].
However, quasi-symmetries are not obvious, since they depend on the choice of the coordinate system in which the
magnetic field is represented. This property is hence characterised as a hidden symmetry. In addition to quasi-
symmetry property, the configuration should preferably be in a state of magnetohydrodynamic (MHD) equilibrium
[RSB22]. For fusion plasmas, this is expressed by the balance between the plasma pressure gradient, and the Lorentz
force, which is the starting point of our coordinates derivation. The MHD equilibrium condition enables to use SPEC
equilibria as support for the Boozer coordinates transformation.

In a previous report, we had introduced the magnetic shear in stellarators, and and studied its dependence
on magnetic axis torsion and flux surfaces ellipticity [Gui22]. In addition, certain shearless configurations have
shown great confinement properties [LP22]. It is hence of interest to determine wether or not the two properties
of quasi-symmetry and being shearless are related. Thus, it is important to define a measure to quantify correctly
the property of quasi-symmetry. Then this metric has to be evaluated over a region of the space of configurations
where the shearless property happens to be present. This way, one would be able to exhibit a correlation if there is one.

Most results about specific magnetic coordinates, as straight field line (SFL) and Boozer coordinates, how they
are derived from general poloidal and toroidal angles, are reviewed in II. The starting point, that is the derivation
of SFL coordinates, is reviewed in IIA. The developement leading to Boozer coordinates starting from SFL ones
is done in II B. Then, mathematical derivation of the magnetic field strength ‖B‖ in several coordinate systems
is done with the objective to emphasize the hidden symmetries mentioned previously in IIC. Afterwards, a brief
development demonstrates how we can constrain the study of our parameters to a narrower space - see IID. Finally
quasi-symmetry is introduced formally and a metric to quantify it is presented in II E. Regarding correlation between
shearless property and weak quasi-symmetry metric value, it is treated in III.
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II. THEORY

A. General magnetic coordinates and transformation to straight field lines coordinates

Let us take the ideal situation where the surfaces of constant pressure are nested. The innermost surface is a
line and corresponds to the magnetic axis. Let also θ, φ ∈ [0, 2π] be arbitrary poloidal and toroidal angles. Take
(p, θ, φ) as coordinate-system, where p is the pressure. The choice of p as an independent radial coordinate can be
justified by the assumption made of a non chaotic equilibrium in the volume enclosed by each magnetic surface, and
that all magnetic surfaces (that is surfaces of constant pressure p) are nested. We seek coordinate systems in which
magnetic field lines are straight, so that the math is simpler, and since they constitute the starting point to the
Boozer coordinates transformation, which is fundamental to understand hidden symmetries of stellarators. Those
symmetries are said to be hidden since they are symmetries of the magnetic field modulus, and are coordinate-system
dependent. Let us now derive several expressions for the magnetic field B in various coordinate systems.

From the ideal-MHD equation

j×B = ∇p, (1)

one can deduce that

B · ∇p = 0,

j · ∇p = 0.
(2)

Making use of Eq.(2), one can expand B in a basis orthogonal to ∇p, that is for example
{
(∇p×∇θ), (∇φ×∇p)

}
.

This yields to

B = B1(p, θ, φ)(∇p×∇θ) +B2(p, θ, φ)(∇φ×∇p). (3)

Now using the Maxwell’s equation ∇ ·B = 0 implies

∇ ·
(
B1(∇p×∇θ) +B2(∇φ×∇p)

)
= 0

⇐⇒ ∇B1 · (∇p×∇θ) +∇B2 · (∇φ×∇p) = 0.
(4)

Making use of the fact that

∇Bα(p, θφ) =
∂Bα
∂p
∇p+ ∂Bα

∂θ
∇θ + ∂Bα

∂φ
∇φ, (5)

and

∇p ·
(
∇p×∇θ

)
= ∇p ·

(
∇φ×∇p

)
= 0, (6)

∇θ ·
(
∇p×∇θ

)
= ∇φ ·

(
∇φ×∇p

)
= 0, (7)

Eq.(4) rewrites

(∂B1

∂φ
+
∂B2

∂θ

)
∇p ·

(
∇θ ×∇φ

)
= 0. (8)
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We used the cyclic property of the triple product: a ·(b×c) = c ·(a×b) = b ·(c×a). One notices that ∇p ·
(
∇θ×∇φ

)
is the jacobian of the coordinate system (p, θ, φ), and it can be shown that in such a geometry of nested {p = cst}
surfaces, it never vanishes, or at least only locally if so. Hence, Eq.(8) implies:

(∂B1

∂φ
+
∂B2

∂θ

)
= 0, ∀φ, θ ∈ [0, 2π]. (9)

Since B1 and B2 are 2π periodic in θ and φ, we can write:∫ 2π

0

∂B1

∂φ
dθ =

∂

∂φ

∫ 2π

0

B1dθ = 0 ∀φ

=⇒
∫ 2π

0

B1dθ = g(p)

=⇒
∫ 2π

0

(
B1 −

g(p)

2π

)
dθ = 0

=⇒ B1 =
∂f

∂θ
+
g(p)

2π
.

(10)

The same way, one gets that

∫ 2π

0

∂B2

∂θ
dφ =

∂

∂θ

∫ 2π

0

B2dφ = 0 ∀θ

=⇒
∫ 2π

0

B2dφ = h(p)

=⇒
∫ 2π

0

(
B2 −

h(p)

2π

)
dφ = 0

=⇒ B2 = −∂f
∂φ

+
h(p)

2π
,

(11)

for some f(p, θ, φ), h(p), g(p), where the minus sign before ∂f/∂φ in Eq.(11) arises for convenience. Let us define now

ψ′(p) =
g(p)

2π
, χ′(p) =

h(p)

2π
, and λ(p, θ, φ) =

f(p, θ, φ)

ψ′(p)
. (12)

Then,

B1(p, θ, φ) =ψ
′(p)
(
1 +

∂λ

∂θ
(p, θ, φ)

)
B2(p, θ, φ) =χ

′(p)− ψ′(p)∂λ
∂φ

(p, θ, φ),
(13)

where the prime denotes the derivative with respect to the pressure p. Recall that

B = B1(∇p×∇θ) +B2(∇φ×∇p)

= ψ′
(
1 +

∂λ

∂θ

)
(∇p×∇θ) +

(
χ′ − ψ′ ∂λ

∂φ

)
(∇φ×∇p).

(14)

Since ψ ≡ ψ(p) and χ ≡ χ(p), it is possible to write the following:



4

∇χ =
∂χ

∂p
∇p = dχ

dp
∇p = χ′∇p

∇ψ =
∂ψ

∂p
∇p = dψ

dp
∇p = ψ′∇p.

(15)

Plugging Eq.(15) in Eq.(14), one obtains for B:

B = ψ′
(
1 +

∂λ

∂θ

)
(∇p×∇θ) +

(
χ′ − ψ′ ∂λ

∂φ

)
(∇φ×∇p)

=
(
∇ψ ×∇θ

)
− ∂λ

∂θ

(
∇θ ×∇p

)
ψ′ −

(
∇χ×∇φ

)
+
∂λ

∂φ

(
∇ψ ×∇φ

)
=
(
∇ψ ×∇θ

)
− ∂λ

∂θ

(
∇θ ×∇ψ

)
+∇φ×∇χ

− ∂λ

∂φ

(
∇φ×∇ψ

)
− ∂λ

∂p

(
∇p×∇ψ

)
=
(
∇ψ ×∇θ

)
+
(
∇ψ ×∇λ

)
+
(
∇φ×∇χ

)
= ∇ψ ×∇

(
θ + λ

)
+∇φ×∇χ.

(16)

For the last step we used that ∇ψ ∝ ∇p to add zero with the term ∂λ/∂p(∇p×∇ψ). Finally, setting θ + λ = θs, B
reads:

B = ∇ψ ×∇θs +∇φ×∇χ. (17)

Note that Eq.(17) gives a contravariant expression for the field B.

One can interpret ψ and χ as toroidal and poloidal magnetic fluxes respectively. Indeed:

∫
φ=cst

B · ndS = 2πψ ≡ 2πψ(p)∫
θ=cst

B · ndS = 2πχ ≡ 2πχ(p).

(18)

So Eq.(28) enables to conclude that poloidal and toroidal magnetic fluxes are constant on {S : p = cst}. Thus, these
are called flux surfaces. Hence, we can work with the coordinate system {ψ, θs, φ}, and write ψ and χ as follows:

ψ ≡ ψ(p) =⇒ p ≡ p(ψ)
χ ≡ χ(p) =⇒ χ ≡ χ(ψ).

(19)

With the above representation Eq.(19), one can define the slope of χ along ψ as

dχ

dψ
=: ι(ψ). (20)

Note that ι does also account for the rate of change of the poloidal angle over a toroidal rotation and along a magnetic
field line:



5

dθ

dφ

∣∣∣∣∣
along B

=
B · ∇θ
B · ∇φ

=

(
∇ψ ×∇θs +∇φ×∇χ

)
· ∇θs(

∇ψ ×∇θs +∇φ×∇χ
)
· ∇φ

=

(
∇φ×∇χ

)
· ∇θs(

∇φ×∇θs
)
· ∇φ

=
∇χ ·

(
∇θs ×∇φ

)
∇ψ ·

(
∇θs ×∇φ

)
=
dχ

dψ
= ι

(21)

This way, one sees that on flux surfaces, in the plane (φ, θs), field lines are straight lines:

dθs
dφ

= ι(ψ) =⇒ θs ∝ φ. (22)

Further properties of magnetic coordinates arise from Eq.(1) since

j×B = ∇p =⇒ j · ∇p = 0. (23)

Recall that

∇ψ = ψ′∇p & ∇χ = χ′∇p

=⇒
(
∇ψ ×∇θs

)
· ∇p =

(
∇φ×∇ψ

)
· ∇p = 0.

(24)

So j can be expanded in the basis {
(
∇ψ ×∇θs

)
,
(
∇φ×∇ψ

)
}. This enables to write

µ0j = J1

(
∇ψ ×∇θs

)
+ J2

(
∇φ×∇ψ

)
. (25)

Using the fact that ∇ · j = 0, and following the same procedure as in Eq.(10,11), one obtains

J1(ψ, θs, φ) =I
′(ψ)− ∂K

∂θs
(ψ, θs, φ),

J2(ψ, θs, φ) =−G(ψ) +
∂K

∂φ
(ψ, θs, φ).

(26)

Here K(ψ, θs, φ), I ′(ψ), G′(ψ) are analogous to f , g and h respectively. This way,

µ0j = ∇×
(
I∇θs +G∇φ+K∇ψ

)
=: ∇×B,

B = I∇θs +G∇φ+K∇ψ +∇H.
(27)

where H plays the role of a spatial integration constant. The previous equation gives a covariant expression for the
magnetic field. Regarding the interpretation of I and G, they carry information about poloidal and toroidal current,
since using Ampère’s law and previous expressions,
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∮
{ψ,φ}=cst

B · dr = 2πI(ψ),∮
{ψ,θ}=cst

B · dr = 2πG(ψ).

(28)

Thus, the integral along a contour of constant φ corresponds to µ0 times the toroidal current inside the flux surface
determined by ψ, whereas the integral along a contour of constant θ is equal to µ0 times the poloidal current between
this surface and infinity [Hel14].

B. Boozer coordinates derivation - following [Hel14]

Boozer coordinates are the basis for advanced stellarator designs - quasi-axisymmetric (QA), quasi -helical-
symmetric (QH), quasi isodynamic (QI). This set of coordinates is particularly useful for the study of the motion
of particles in integrable magnetic fields with closed and nested flux-surfaces. Indeed, in these coordinates, motion
around the guiding center only depends on the variation of magnetic field and electrostatic potential. The guiding
center Lagrangian in Boozer coordinates, as introduced in [CS97] reads

Lgc =
(
mu

Bψ
B

)
ψ̇ +

(
e
ψ

c
+mu

Bθb
B

)
θ̇b +

(
e
Aφb
c

+mu
Bφb
B

)
φ̇b − h, (29)

where B = ‖B‖, A the vector potential evaluated at the guiding center position, h the Hamiltonian, m the mass and u
the parallel velocity. Moreover, in Boozer coordinates, the angular dependance of all quantities that appear in Eq.(29)
depends on the angular dependance of ‖B‖. Let us now introduce the outline for the coordinates transformation
leading to Boozer coordinates.

i) Start from general poloidal and toroidal angles θ and φ.

ii) Change θ to get straight field lines in the plane (φ, θ): θ → θs = θ + λ.

iii) Note that φ was left intact: for each φ, ∃ θs leading to B s.t

B = ∇ψ ×∇θs +∇φ×∇χ. (30)

iv) Change from (θs, φ) to (θb, φb) by mean of the difference between the initial and final toroidal angles ν := φb − φ
such that θb = θs+ιν. This way, the covariant expression for B Eq.(27) should be preserved (minus the integration
constant):

B = I∇θb +G∇φb +K∇ψ. (31)

Moreover, the lines orthogonal to B and tangent to flux surfaces (that is lines colinear to B×∇ψ), are straight
in Boozer coordinates.

We shall now proceed to the derivation. We follow the process by Helander [Hel14]. Recall Eq.(27):

B = I∇θs +G∇φ+K∇ψ +∇H. (32)
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Now write

θs = θ′ + ιω,

φ = φ′ + ω,
(33)

where ω ≡ ω(ψ, θs, φ) is well behaved and periodic in θs, φ. Recall also that Eq.(17):

B = ∇ψ ×∇θs +∇φ×∇χ. (34)

Starting from Eq.(34),

∇θs = ∇ (θ′ + ιω) = ∇θ′ + ι∇ω + ω∇ι,
∇φ = ∇ (φ′ + ω) = ∇φ′ +∇ω,

(35)

we use that

∇ω =
∂ω

∂ψ
∇ψ +

∂ω

∂θs
∇θs +

∂ω

∂φ
∇φ and ∇ι = ∂ι

∂ψ
∇ψ. (36)

Moreover, note that

ι =
dχ

dψ
=⇒ ∇χ = ι∇ψ. (37)

Plugging these expressions into Eq.(34), one gets

B = ∇ψ ×
(
∇θ′ + ι∇ω + ω∇ι

)
+
(
∇φ′ +∇ω

)
×∇χ. (38)

Now, replacing ∇ω by its expression from Eq.(36), and identifying the arising terms with ι as in Eq.(37), one gets the
following:

B =∇ψ ×
(
∇θ′ + ι

∂ω

∂ψ
∇ψ + ι

∂ω

∂θs
∇θs + ι

∂ω

∂φ
∇φ
)

+
(
∇φ′ + ∂ω

∂ψ
∇ψ +

∂ω

∂θs
∇θs +

∂ω

∂φ
∇φ
)
×
(
∇χ ∝ ∇p ∝ ∇ψ

)
.

(39)

Using that ∇χ = ι∇ψ and ∇a×∇b = −∇b×∇a,

B =∇ψ ×
(
∇θ′ + ι

∂ω

∂θs
∇θs + ι

∂ω

∂φ
∇φ
)

+∇φ′ ×∇χ+
( ∂ω
∂θs
∇θs +

∂ω

∂φ
∇φ
)
×
(
∇χ ∝ ∇ψ

)
=∇ψ ×∇θ′ +∇φ′ ×∇χ.

(40)

Note that B in Eq.(40) takes the contravariant form as in Eq.(34). Now, take Eq.(32) and insert ∇θs(θ′):

B = I∇θ +G∇φ+K∇ψ +∇H

= I
(
∇θ′ + ι∇ω + ω∇ι

)
+G

(
∇φ′ +∇ω

)
+K∇ψ +∇H

= I∇θ′ +G∇φ′ +
(
K + Iω

∂ι

∂ψ

)
∇ψ + ιI∇ω +G∇ω +∇H.

(41)
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In Eq.(41), we used that ω∇ι = ω∂ι/∂ψ∇ψ to go from second to third line. Now, using the trick of rewriting 0 as
0 = a− a in the previous expression for B, we obtain:

B =I∇θ′ +G∇ψ′ +K∇ψ +

[
ω
(
i
∂ι

∂ψ
+ ι

∂I

∂ψ
− ι ∂I

∂ψ

)
∇ψ

]

+

[
∇H + ιI∇ω +∇ (ιI)−∇ (ιI) +G∇ω − ω∇G+ ω∇G

]
.

(42)

Rearranging the terms between brackets yields to

B = I∇θ′ +G∇φ′ +

[
K − ω ∂

∂ψ

(
ιI +G

)]
∇ψ +∇H +∇

[(
ιI +G

)
ω

]
. (43)

Thus, it is finally possible to write

B = I∇θ′ +G∇φ′ +K ′∇ψ +∇H ′, (44)

with

K ′ = K − ω ∂

∂ψ

(
ιI +G

)
H ′ = H +

(
ιI +G

)
ω.

(45)

Now, the boozer coordinates (θ′ = θb, φ
′ = φb) are chosen such that H ′ = 0. Note that

H ′ ≡ 0 =⇒ ∇H ′ = 0 =⇒ H +
(
ιI +G

)
ω = 0

⇐⇒ ω = − H

ιI +G
.

(46)

Hence, the Boozer coordinates transformation can be written as

θs −→ θb = θs + ι
H

ιI +G
,

φ −→ φb = φ+
H

ιI +G
.

(47)

Recall from Eq.(28) that I ∝ Itor and G ∝ Ipol. Thus, it allows us the following interpretation:

B ∼ Itor∇θ′ + Ipol∇φ′ +K ′∇ψ +∇(Integration cst H ′) (48)

H ′ can indeed be seen as an integration constant, that has to vanish in Boozer coordinates.
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FIG. 1. Poloidal and toroidal currents I and G from the developments above for the outermost surface of a toroidal device

FIG. 2. One magnetic field line plotted over 11 toroidal periods for a random configuration in (e, τ) plane (R11 = 0.24, R10 =
0.04), in different sets of coordinates, starting from the origin

To sum up with the two coordinate systems introduced previously (SFL and Boozer), Fig.(2) shows a magnetic
field line plotted over 11 toroidal periods, for one random configuration in the torsion-ellipticity plane. One can note
that the behavior of the line is as expected: in the SFL (θs, φ) magnetic coordinates, the field line is indeed straight,
that is θs is linear in φ. Identical behavior is observed in Boozer coordinates (θb, φb), which coincides with the theory.
Note that the represented field line is the same in the three coordinate systems.

C. Fourier coefficients for ‖B‖ in several coordinate systems

Since for the numerically implemented Boozer coordinates transformation, we needed as an input the Fourier modes
of ‖B‖ [SHW+00], we proceed below to their mathematical derivation. Let us write ‖B‖ in the form of its Fourier
series, as a function of any poloidal and toroidal angles θ and φ:

‖B‖ =
∑
m,n

Bmn cos(mθ − nφ). (49)

Recall that for a real function f , one has that its Fourier series converges to the function itself, reading:
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f(x) =
∑
n

f̂ne
2πin xT ,

f̂n :=
1

T

∫ T

0

f(x)e−2πin
x
T .

(50)

Thus, one obtains the following for the Fourier coefficients of ‖B‖:

Bmn =
1

2π

Nfp
2π

∫ 2π/Nfp

0

∫ 2π

0

dθdφ‖B‖(θ, φ)e−2πi
(
m θ

2π+n
Nfpφ

2π

)
. (51)

Hence, dropping the (θ, φ) dependence for the sake of simplicity, omitting the integration boundaries, and using a
trigonometric relation:

∫∫
‖B‖ cos(m′θ − n′Nfpφ) =

∫∫ ∑
m,n

Bmn cos(mθ − nNfpφ) cos(m′θ − n′Nfpφ)dθdφ,

=
∑
m,n

∫∫
‖B‖ cos(mθ − nNfpφ) cos(m′θ − n′Nfpφ)dθdφ.

(52)

Using trigonometric identities to transform the cos product, and the fact that

∫ 1

0

dt cos(2πnt) cos(2πn′t) =

∫ 1

0

dt sin(2πnt) sin(2πn′t) =
1

2
δnn′ , (53)

=⇒
∫∫
‖B‖ cos(m′θ − n′Nfpφ)dθdφ

=
∑
m,n

Bmn

[
πδmm′

{∫ 2π/Nfp

0

dφ cos(n′Nfpφ) cos(nNfpφ) +

∫ 2π/Nfp

0

dφ sin(n′Nfpφ) sin(nNfpφ)
}]

=
∑
m,n

Bmn

[
πδmm′

{ 2π

Nfp

∫ 1

0

dφ cos(2πn′φ) cos(2πnφ) +
2π

Nfp

∫ 1

0

dφ sin(2πn′φ) sin(2πnφ)
}]

=
2π2

Nfp
δmm′δnn′Bmn

=
2π2

Nfp
Bm′n′ .

(54)

Hence, one obtains a direct expression for the Fourier coefficients:

Bmn =
Nfp
2π2

∫∫
‖B‖ cos(mθ − nNfpφ)dθdφ. (55)

The Fourier modes of ‖B‖ can also be expressed in terms of straight field lines (SFL) (θs, φs), and as a verification
of our numerical implementation, in Boozer (θb, φb) coordinates. Recall, that for a bijective and C1 vector field
v : U → V s.t v(s, t) = (x, y), for any f : V → R integrable
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∫∫
U

f(v(s, t))|det(Jv(s, t))|dsdt =
∫∫

V

f(x, y)dxdy. (56)

Denoting by gs(θ, φ) = (θs, φs) the coordinates transformation from geometric to (SFL), one gets that

Bsmn =
Nfp
2π2

∫∫
‖B‖(θs, φs) cos(mθs − nφs)dθsdφs,

=
Nfp
2π2

∫∫
‖B‖(θ, φ) cos(mθ − nφ)|det Jsg(θ, φ)|dθdφ,

(57)

where Jsg(θ, φ) denotes the jacobian matrix of the coordinates transformation gs. We recall now the definition gs :

θ → θs = θ + λ(θ, φ),

φ→ φs ≡ φ,
(58)

with λ defined by its Fourier series:

λ(θ, φ) =

Mpol∑
m=0

Ntor∑
n=−Ntor

λmn sin(mθ − nφ). (59)

Thus, writing gs as gs(θ, φ) = (gθ(θ, φ), gφ(θ, φ)), one gets for Jsg:

Jsg(θ, φ) =

(
∂gθ
∂θ

∂gθ
∂φ

∂gφ
∂θ

∂gφ
∂φ

)
. (60)

Omitting the (θ, φ) dependence, det Jsg = ∂gθ
∂θ

∂gφ
∂φ −

∂gθ
∂φ

∂gφ
∂θ , and using

gθ = θ +

Mpol∑
m=0

Ntor∑
n=−Ntor

λmn sin(mθ − nφ),

gφ = φ,

(61)

Jsg(θ, φ) =

(
∂gθ
∂θ

∂gθ
∂φ

0 1

)
. (62)

This way,

∣∣∣det Jg

∣∣∣ = ∣∣∣∂gθ
∂θ

∣∣∣ = ∣∣∣∣∣1 +
Mpol∑
m=0

m ·
Ntor∑

n=−Ntor

λmn cos(mθ − nφ)

∣∣∣∣∣. (63)

Hence,

Bsmn =
Nfp
2π2

∫∫
dθdφ‖B(θ, φ)‖

∣∣∣∣∣1 + ∑
m′,n′

m′λm′n′ cos(m′θ − n′φ)

∣∣∣∣∣ cos(mθ − nφ). (64)
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The same process can be applied to deduce an expression for the Fourier modes of ‖B‖ in Boozer coordinates. This
result will indeed be useful to verify the numerical implementation of the coordinates transformation.

Bbmn =
Nfp
2π2

∫∫
‖B‖(θ, φ) cos(mθ − nφ)|det Jbg(θ, φ)|dθdφ. (65)

For Boozer coordinates, the transformation from (θ, φ) to (θb, φb) is given by Eq.(66).

gbθ := θs + ιν = θ + λ+ ιν = θ − (θs − θ) + ιν = θ +
∑
m,n

(λmn + ινmn) sin(mθ − nφ),

gbφ := φ+ ν = φ+
∑
m,n

νmn sin(mθ − nφ),
(66)

where we used that in the case of a stellarator symmetric configuration, ν =
∑
m,n νmn sin(mθ−nφ). The determinant

of the jacobian of gb can then be computed explicitly to give Bbmn.

Jbg(θ, φ) =

 ∂gbθ
∂θ

∂gbθ
∂φ

∂gbφ
∂θ

∂gbφ
∂φ

 , (67)

which gives in terms of matrix coefficients

Jbg11
= 1 +

∑
m,n

m (λmn + ινmn) cos(mθ − nφ),

Jbg12
= −

∑
m,n

n (λmn + ινmn) cos(mθ − nφ),

Jbg21
=
∑
m,n

mνmn cos(mθ − nφ),

Jbg22
= 1−

∑
m,n

nνmn cos(mθ − nφ).

(68)

The jacobian determinant then reads

∣∣∣ det Jbg∣∣∣ =∣∣∣Jbg11
Jbg22

− Jbg12
Jbg21

∣∣∣
=
∣∣∣− [1 + (λmn + ινmn)

][
n′ (λm′n′ + ινm′n′)

][
m′′νm′′n′′

][
1− n′′′νm′′′n′′′

]
· cos(mθ − nφ) cos(m′θ − n′φ) cos(m′′θ − n′′φ) cos(m′′′θ − n′′′φ)

∣∣∣
(69)

where we used Einstein’s summation convention in Eq.(69). The above result can then be inserted in Eq.(65) to
obtain the coefficients.
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FIG. 3. ‖B‖ and a field line plotted in general (θ, φ), SFL (θs, φs) and Boozer (θb, φb) coordinates for the QA configuration
from Fig.(6) (Up) and the QH configuration from Fig.(5) (Down)

D. Central symmetry

Below we show that we can constrain any ellipticity-torsion based study to the half plane [0, emax]× [−τmax, τmax].
As our numerical studies in the ellipticity-torsion plane are conducted using SPEC, the previous half plane is written
as [0, Rmax

11 ] × [−Rmax
10 , Rmax

10 ]. We had Rmax
11 = 0.3 and Rmax

10 = 2. Indeed, there is a central symmetry around the
origin. Assume furthermore stellarator-symmetry (pure cosine series for the plasma boundary). Take a general (θ, φ)
coordinate system and assume that any Fourier mode is zero apart from R10 and R11:

R(θ, φ) = R0 +R10 cos(Nfpφ) +R11 cos(θ −Nfpφ),
Z(θ, φ) = Z10 cos(Nfpφ) + Z11 cos(θ −Nfpφ).

(70)

Setting now R10, Z10 −→ −R10,−Z10 and R11, Z11 −→ −R11,−Z11, one obtains for the parametrisation:

R̃(θ, φ) = R0 −R10 cos(Nfpφ)−R11 cos(θ −Nfpφ),
Z̃(θ, φ) = −Z10 cos(Nfpφ)− Z11 cos(θ −Nfpφ).

(71)

which rewrites (using sine and cosine symmetries)

R̃(θ, φ) = R0 +R10 cos(Nfpφ+ π) +R11 cos(θ −Nfpφ+ π) = R(θ, φ+ π),

Z̃(θ, φ) = +Z10 cos(Nfpφ+ π) + Z11 cos(θ −Nfpφ+ π) = Z(θ, φ+ π).
(72)
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which is equivalent to have rotated the system of π around the origin. Fig.(4) confirms the above development as the
magnetic shear has been scanned over the full plane [−Rmax

11 , Rmax
11 ]× [−Rmax

10 , Rmax
10 ], showing the central symmetry

discussed previously.

FIG. 4. Magnetic shear scanned over the full plane emphasising the central symmetry discussed above. The white region
around the origin corresponds to a zone of non-convergence of the SPEC code.

FIG. 5. A quasi-helical symmetric configuration (QH) in general (θ, φ) (Left) and Boozer (θb, φb) (Right) coordinates. The
color plot shows the amplitude of the magnetic field ‖B‖.
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E. A measure of quasi-symmetry

Quasisymmetric stellarators are an attractive class of optimized magnetic confinement devices to achieve nuclear
fusion [RPB21, RSB21]. Practically, the property of quasi-symmetry - that we shall denote by QS from now on - is
approximate. It is thus necessary to define a metric in the space of configurations to quantify the departure from the
exact QS. The definition of such a metric is not unique, and its expression may be dependent of the choice of magnetic
coordinates. One of the commonly used metric to quantify QS is the so-called triple product formulation of QS:

fT = ∇ψ ×∇B · ∇
(
B · ∇B

)
, (73)

where ψ denotes the usual radial coordinate defined by flux surfaces, and f the letter to refer to the metric. In Boozer
coordinates, the triple product metric fT takes the following form:

f bT =
[
∂θbB∂φb − ∂φbB∂θb

](
∂φb + ι∂θb

)
B. (74)

It follows that ∂φbB/∂θbB must be a flux function, and hence that B has an explicit symmetry. The property of QS
as defined by Boozer [Boo] and Rodríguez et al. [RSB21] then naturally arises. It may be expressed as follows: a
magnetic field is QS if and only if its magnitude can be written as a function B(ψ,Mθb − Nφb), with M,N ∈ Z.
Generally, we define the helicity as α = N/M and the helical angle ξ = θb − αφb. With these definitions, it is
customary to define the so-called minimal measure [RPB21]:

fB =
∑
m,n
n 6=αm

|Bmn|2. (75)

Here Bmn denotes the Fourier coefficients of B in Boozer coordinates as in Eq.(65) However, Eq.(75) can be adapted
to the desired type of QS. Indeed, the metric that characterises the distance to exact quasi-axisymmetry (QA) will
not be the same as to characterise exact quasi helical-symmetry (QH). We define them as follow:

fQA =
∑
n 6=0

|Bmn|2

|B00|2
,

fQH =
∑
n 6=αm

|Bmn|2

|B00|2
.

(76)

In this report, they will be both reviewed in the plane ellipticity-torsion by mean of the SPEC code, that is, both
metric will be scanned over the plane (R11, R10), for SPEC equilibria with one volume devoid of current. In a previous
report, we had scanned the magnetic shear s = ∂ι/∂r, which had enabled to show shearless-regions [Gui22]. Scanning
different metrics on the same plane has as main motivation to determine wether there is a correlation between shearless
and QS, that is {s = 0} and {fα ∼ 0, α = QA, QH}. Nevertheless, the previous condition has to be taken carefully,
since only two Fourier modes have been taken into account to parametrise the plasma boundary in the SPEC code
[LHN16]. So the above correlation can be written as follows

{s = 0}R11,R10

?←→ {fα ' 0, α = QA, QH}R11,R10 . (77)

Fig.(5)-(6) show respectively a QH and a QA configurations, optimized for the metrics defined as in Eq.(76). The
magnitude of B has been plotted over the plasma boundary in both general and Boozer coordinates, so that the
symmetry of ‖B‖ over each field period is visible. The QA configuration has NQA

fp = 2 whereas the QH has NQH
fp = 5.
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FIG. 6. A quasi-axisymmetric configuration (QA) in general (θ, φ) (Left) and Boozer (θb, φb) (Right) coordinates

III. RESULTS

A. On the correlation between the shear and the metrics fQH and fQA
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FIG. 7. Left: Magnetic shear s in the plane (R11, R10) (red curve ≡ {s = 0}). Middle: log10(fQH) in the same plane. Right:
log10(fQA) in the same plane.

Fig.(7) shows the magnetic shear s in the plane ellipticity-torsion (R11, R10), as well as the quasi-helical symmetry
and quasi-axisymmetry metrics fQH and fQA respectively. Three configurations have been chosen to be studied, in
order to confirm or infirm the correlation condition Eq.(77). Recall that the main objective was to determine wether
or not we could have QS properties whenever we had the shearless s = 0 condition fulfilled. Recall also that the closer
the metric is to zero, the closer the configuration is to be QS. This way, one immediately sees that the zones of weak
metric (on the middle and right figures) do not match the red curve from the left plot. Hence, we are in measure to
rule out the bijection for the correlation type in Eq.(77). However, it is not sufficient to state that the two sets are
not correlated. Indeed, one might have to consider more Fourier modes to describe the plasma boundary and the
magnetic axis, and hence the study should be made on a less constrained space.

However, in order to verify that our choice of metric remains consistent, even though we could not see any correlation,
the magnetic field strength has been evaluated in Boozer coordinates for the three configurations mentioned above.
One shearless configuration has been taken (black dot), and compared to one configuration with fQH ∼ 0 (red dot)
and one with fQA ∼ 0 (green dot).
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The results are shown in Fig.(8). The left plot shows ‖B‖ for the shearless configuration, in Boozer coordinates.
Comparing it with the configuration marked with a red dot, that is the one with fQH ∼ 0, and the central plot of
Fig.(8), one sees that it is not exactly QH. Nevertheless, it is visually closer from QH than the shearless configuration
(recall that Fig.(3) provides an example of a QH config.). The same comparison can be made for the parametrisation
such that fQA ∼ 0 (marked with a green dot). Although it is not exactly QA, it is also visually closer to the QA
property than the shearless one.

FIG. 8. ‖B‖ in Boozer coordinates for several configurations from the plane (R11, R10). Left: corresponds to the black dot on
Fig.(7) - Middle: red dot - Right: green dot

One further comment can be made about the QA property. According to [LS18, LSP19, PLH19], for any magnetic
axis torsion τ , there is a magnetic surface ellipticity e associated such that the resulting configuration is QA, or at
least close to be. The right plot of Fig.(7) (fQA) confirms the previous statement. The two dashed lines represent
a contour of constant f , emphasising that {fQA ∼ 0} wanders the hole plane - recall the central symmetry of any
quantity parametrised by (R11, R10) around (0, 0) (see IID).

IV. CONCLUSION

In this report, different sets of magnetic coordinates have been introduced. Straight field lines coordinates as well
as the so-called Boozer coordinates have been formally derived starting from common poloidal and toroidal angles.
The numerical implementation of these two sets of coordinates enabled to illustrate the concept of quasi symmetry
through several particular examples, as a quasi-axisymmetric and a quasi-helical symmetric configurations.

Implementation of a metric to quantify the deviation from quasi-symmetry over the plane of ellipticity and torsion
permitted to rule out any bijection between the two properties of quasi-symmetry and constant rotational transform
profile, that is shearless configuration. Indeed, when we introduced Eq.(77) to express a general relation between
those two properties, we wondered wether there would exist a bijection between them, or if the set of quasi-symmetric
configuration was included in the set of shearless configurations, as [LP22] had found several shearless configurations
showing quasi-symmetry. However, results have demonstrated that there exist shearless configurations such that no
quasi-symmetry property can be exhibited.

In order to study if those two properties (shearless and quasi-symmetry) are related in a way, one should explore
other dimensions of the space of configurations, since there exists other ways to generate a magnetic axis torsion,
than just imposing the Fourier mode R10 to be non zero. Other modes defining the plasma boundary influence the
torsion, adding dimensions to the space of configurations. We have been able to demonstrate only that there exists
no bijection between QS and {s = 0}. Fig.(9) summarises what situation might have been expected, versus what the
observations were.
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Others optimisation processes may involve more Fourier modes, as well as the addition of other properties such
as omnigenity [JPD+22], or the computation of magnetic equilibria with different equilibrium codes (combination
SPEC-VMEC for example) to define an objective function [LMZ21].

s = 0 QA

QH

s = 0

QH,
QA

FIG. 9. Venn diagram for the correlation between shearless property and QS - Left: Hypothesis for the correlation between
shearless and QS properties - Right: Conclusion after examination of Fig.(7) and [LP22]

Appendix A: Field line and ‖B‖ over the full toroidal period of the QH configuration

FIG. 10. ‖B‖ in general (Left) and Boozer (Right) coordinates for the same QH configuration as in Fig.(3). A field-line has
been plotted over several periods, and ‖B‖ is plotted over the full toroidal period in order to emphasise better how the change
of coordinate acts on the field-lines. It was difficult to see that the initial field-line was not straight in Fig.(3)

.
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